DETERMINATION OF LATERAL BEHAVIOUR OF FRAMED TUBE STRUCTURES AND COMPARISION WITH CONVENTIONAL SHEAR WALL STRUCTURES

BY

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

DETERMINATION OF LATERAL BEHAVIOUR OF FRAMED TUBE STRUCTURES AND COMPARISION WITH CONVENTIONAL SHEAR WALL STRUCTURES

THESIS IS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING OF UNIVERSITY OF MORATUWA, FOR THE PARTIAL FULFILMENT OF THE DEGREE OF MASTER OF ENGINEERING IN STRUCTURAL ENGINEERING DESIGN

Supervised by Prof M T R Jayasinghe

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

December 2010

DECLARATION

I hereby declare that the content of this thesis is the output of original research work carried out at the Department of Civil Engineering, University of Moratuwa. Whenever the work done by others was used, it was mentioned appropriately as a reference.

L M V Kanchana

Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

Even today, only a very few number of tall buildings are available in Sri Lanka, compared to other countries in the world. However with increase in population and due to the limited space availability the latest trend is to spread buildings vertically than laterally. Nowadays, there is a much greater demand for taller buildings relative to the past.

After concrete was introduced to construction world, it gained many improvements within a short time period and because of that concrete buildings spread all over the world. Due to the higher strength ranges that can be achieved by good quality concrete, the section dimensions of members in concrete buildings have reduced drastically in the recent past. The increase in height accompanied with the reduced member sizes formed slender buildings, which require more attention focused on the lateral stability of the building. This problem was however solved by the introduction of various efficient structural forms such as shear walls, shear cores, outriggers, framed tube, etc. in to the building skeleton.

The lateral behaviour of framed tube substructure and conventional shear wall structure is observed in this research to a certain extent. 40, 35, 30, 25 and 20 storey framed tube buildings are analysed for different lateral load combinations. The same scenario is carried out for conventional shear wall structure. Mainly the deflection, wind induced acceleration and fundamental period due to lateral loads are observed and analysed. The frame tube structures give 50% reduction in deflection and wind induced acceleration.

ACKNOWLEDGEMENT

My sincere thanks to the project supervisor Prof. M. T. R. Jayasinghe, for devoting his valuable time in guiding me to complete the research study. It is no doubt that without his interest and guidance this would not have been a success. He not only provided direction and guidance through the course of this research, but also inspired me to really learn and understand structural engineering.

I wish to thank the Vice Chancellor, Dean of the Faculty of Engineering and Head of the Department of Civil Engineering of the University of Moratuwa, for the permission granted for this research work. Further, I wish to offer my thanks to the Co-ordinator of the Post Graduate research work of Structural Engineering and all the lecturers and staff of the Department of Civil Engineering who helped me in numerous ways. Also I wish to thank the librarian and the staff of the library for the co-operation extended to me for this research work.

I am particularly indebted to Eng. A S B Edirisinghe, Managing Director of Anuruddha Edirisinghe Associates, for the encouragement and support given me to success this research work and to prepare this thesis during the period of research.

Whole hearted thanks to my husband for the encouragement given from the beginning of the research. The final acknowledgement is to all others helped in various ways for completing the work.

CONTENTS

i
ii
iii
iv
ix
xi

Chapter 1

Introduction

1.1	General	1
1.2	Objectives	3
1.3	Methodology	3
1.4	Main findings	3
1.5	An overview of the thesis	3

Chapter 2 Literature review University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

2.1	General	5
2.2	Structural forms	6
	2.2.1 Rigid-frame structures	11
	2.2.2 Braced frame structures	11
	2.2.3 Infilled-frame structures	12
	2.2.4 Flat-plate, flat-slab and columns structures	13
	2.2.5 Shear wall structures	14
	2.2.6 Wall-frame structure	15
	2.2.7 Outrigger-braced structures	15
	2.2.8 Tube structures	16
	2.2.9 Core structures	18
	2.2.10 Hybrid structures	18
	2.2.11 Height to width ratios of high rise buildings	19
2.3	Structural stability	19
	2.3.1 Recommended values	19

	2.3.2 Drift constraints	20
2.4	Loads on structures	21
	2.4.1 Wind loads on structures	21
	2.4.2 Human tolerance to wind action	22
	2.4.3 Human perception of building motion	23
	2.4.4 Perception thresholds	23
2.5	Structural analysis by software SAP 2000 version 12	24
2.6	Verification of SAP 2000 software by modelling a 10 storey	
	frame and drift calculation	25
2.7	Summary	28

Chapter 3

Structural arrangements and loads applied for case study

3.1	General	30
3.2	Layout of structure	30
	3.2.1 Vertical Circulation of the building	30
	3.2.2 Service Core and Shear Walls	31
	3.2.3 Floor loads	31
	3.2.4 Initial member sizing	32
3.3	Material properties of the structure	32
	3.3.1 Concrete	32
	3.3.2 Reinforcement	33
3.4	Loading to be applied on the structures	33
	3.4.1 Dead and Imposed (Live) loads	33
	3.4.2 Lateral loads	33
	3.4.2.1 Selection of wind speed for high rise buildings in	
	Sri Lanka	34
	3.4.2.2 Wind load calculation	35
3.5	Structural forms for case study	35
	3.5.1 40 Storeyed building modelled with perimeter tube	
	(Model No 01:- 40 TUBE)	35
	3.5.2 40 Storeyed building modelled without perimeter tube	
	(Model No 02:- 40 SHEAR)	38

	3.5.3 35 Storeyed building modelled with perimeter tube	
	(Model No 03:- 35 TUBE)	41
	3.5.4 35 Storeyed building modelled without perimeter tube	
	(Model No 04:- 35 SHEAR)	44
	3.5.5 30 Storeyed building modelled with perimeter tube	
	(Model No 05:- 30 TUBE)	46
	3.5.6 30 Storeyed building modelled without perimeter tube	
	(Model No 06:- 30 SHEAR)	49
	3.5.7 25 Storeyed building modelled with perimeter tube	
	(Model No 07:- 25 TUBE)	51
	3.5.8 25 Storeyed building modelled without perimeter tube	
	(Model No 08:- 25 SHEAR)	53
	3.5.9 20 Storeyed building modelled with perimeter tube	
	(Model No 09:- 20 TUBE)	55
	3.5.10 20 Storeyed building modelled without perimeter tube	
	(Model No 10:- 20 HEAR)	58
3.6	Summary Electronic Theses & Dissertations	60
	www.lib.mrt.ac.lk	
Chapter 4		
Computer me	odelling and case study	
Computer me 4.1	Computer modelling	61
-		61 61
4.1	Computer modelling	
4.1	Computer modelling	
4.1 4.2	Computer modelling Load cases and combinations	
4.1 4.2 Chapter 5	Computer modelling Load cases and combinations	
4.1 4.2 Chapter 5 Results and o	Computer modelling Load cases and combinations bservation	61
4.1 4.2 Chapter 5 Results and o	Computer modelling Load cases and combinations bservation 40 storey building	61 63
4.1 4.2 Chapter 5 Results and o	Computer modelling Load cases and combinations bservation 40 storey building 5.1.1 Deflection	61 63 63
4.1 4.2 Chapter 5 Results and o	Computer modelling Load cases and combinations bservation 40 storey building 5.1.1 Deflection 5.1.2 Natural period of frequency and fundamental period	61 63 63 64
4.1 4.2 Chapter 5 Results and o	Computer modelling Load cases and combinations bservation 40 storey building 5.1.1 Deflection 5.1.2 Natural period of frequency and fundamental period 5.1.3 Wind induced acceleration	61 63 64 64
4.1 4.2 Chapter 5 Results and o 5.1	Computer modelling Load cases and combinations bservation 40 storey building 5.1.1 Deflection 5.1.2 Natural period of frequency and fundamental period 5.1.3 Wind induced acceleration 5.1.4 Summary of analysis result	 61 63 63 64 64 64
4.1 4.2 Chapter 5 Results and o 5.1	Computer modelling Load cases and combinations bservation 40 storey building 5.1.1 Deflection 5.1.2 Natural period of frequency and fundamental period 5.1.3 Wind induced acceleration 5.1.4 Summary of analysis result 35 storey building	 61 63 63 64 64 64 65
4.1 4.2 Chapter 5 Results and o 5.1	Computer modelling Load cases and combinations bservation 40 storey building 5.1.1 Deflection 5.1.2 Natural period of frequency and fundamental period 5.1.3 Wind induced acceleration 5.1.4 Summary of analysis result 35 storey building 5.2.1 Deflection	 61 63 63 64 64 64 65 65

vi

	5.2.4 Summary of analysis result	66
5.3	30 storey building	67
	5.3.1 Deflection	67
	5.3.2 Natural period of frequency and fundamental period	68
	5.3.3 Wind induced acceleration	68
	5.3.4 Summary of analysis result	68
5.4	25 storey building	69
	5.4.1 Deflection	69
	5.4.2 Natural period of frequency and fundamental period	70
	5.4.3 Wind induced acceleration	70
	5.4.4 Summary of analysis result	70
5.5	20 storey building	71
	5.5.1 Deflection	71
	5.5.2 Natural period of frequency and fundamental period	72
	5.5.3 Wind induced acceleration	72
	5.5.4 Summary of analysis result	72
5.6	Summary Electronic Theses & Dissertations	73
	www.lib.mrt.ac.lk	
Chapter 6		
Conclusion a	nd future work	
6.1	Conclusion	74
6.2	Future work	75
References		76
Appendices		
Appendix A		
A.1	Calculations – Selection of structural dimensions of 40	
	storeyed building	78
A.2	Calculations – Selection of structural dimensions of 35	
	storeyed building	80
A.3	Calculations – Selection of structural dimensions of 30	
	storeyed building	82

A.4	Calculations – Selection of structural dimensions of 25	
	storeyed building	84
A.5	Calculations – Selection of structural dimensions of 25	
	storeyed building	85
Appendix B		
B.1	Calculations – Determination of number of lifts	87
B.2	Calculations – Sizing of stairway	89
Appendix C		
Wind load ca	lculation	90

Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of figures

Figure 2.1	Structural systems for concrete buildings	8
Figure 2.2	Interior Structural Forms in High Rise Buildings	9
Figure 2.3	Exterior Structural Forms in High Rise Buildings	10
Figure 2.4	Flat slabs with drop panels and shear walls	13
Figure 2.5	Flat slabs with drop panels and shear walls	13
Figure 2.6	Shear Wall-Frame Interactions	14
Figure 2.7	Exterior braced tube: (a) schematic elevation; (b) plan	18
Figure 2.8	Moment resisting frame with lateral loads	25
Figure 2.9	SAP analysis window of the moment resisting frame	27
Figure 2.10	Height vs. drift in 10 storey moment resisting frame	28
Figure 3.1	Wind zones in Sri Lnka	34
Figure 3.2	Layout of the 40 Storey building with perimeter tube	36
Figure 3.3	Layout of the 40 Storey building without perimeter tube	39
Figure 3.4	Layout of the 35 Storey building with perimeter tube	41
Figure 3.5	Layout of the 35 Storey building without perimeter tube	44
Figure 3.6	Layout of the 30 Storey building with perimeter tube	47
Figure 3.7	Layout of the 30 Storey building without perimeter tube	49
Figure 3.8	Layout of the 25 Storey building with perimeter tube	51
Figure 3.9	Layout of the 25 Storey building without perimeter tube	54
Figure 3.10	Layout of the 20 Storey building with perimeter tube	56
Figure 3.11	Layout of the 20 Storey building without perimeter tube	58
Figure 4.1	Wind directions and selected locations to get results	62
Figure 5.1	Height vs Displacement at location A for the load combination	
	1.2Gk+1.2Qk+1.2Wk for X direction and Y direction (Models	
	40 TUBE, 40 SHEAR)	63
Figure 5.2	Height vs Displacement at location A for the load combination	
	1.0Gk+1.4Wk for X direction and Y direction (Models	
	40 TUBE, 40 SHEAR)	63
Figure 5.3	Height vs Displacement at location A for the load combination	
	1.2Gk+1.2Qk+1.2Wk for X direction and Y direction (Models	
	35 TUBE, 35 SHEAR)	65

Figure 5.4	Height vs Displacement at location A for the load combination	
	1.0Gk+1.4Wk for X direction and Y direction (Models	
	35 TUBE, 35 SHEAR)	65
Figure 5.5	Height vs Displacement at location A for the load combination	
	1.2Gk+1.2Qk+1.2Wk for X direction and Y direction (Models	
	30 TUBE, 30 SHEAR)	67
Figure 5.6	Height vs Displacement at location A for the load combination	
	1.0Gk+1.4Wk for X direction and Y direction (Models	
	30 TUBE, 30 SHEAR)	67
Figure 5.7	Height vs Displacement at location A for the load combination	
	1.2Gk+1.2Qk+1.2Wk for X direction and Y direction (Models	
	25 TUBE, 25 SHEAR)	69
Figure 5.8	Height vs Displacement at location A for the load combination	
	1.0Gk+1.4Wk for X direction and Y direction (Models	
	25 TUBE, 25 SHEAR)	69
Figure 5.9	Height vs Displacement at location A for the load combination	
	1.2Gk+1.2Qk+1.2Wk for X direction and Y direction (Models	
	20 TUBE, 20 SHEAR)	71
Figure 5.10	Height vs Displacement at location A for the load combination	
	1.0Gk+1.4Wk for X direction and Y direction (Models	
	20 TUBE, 20 SHEAR)	71

List of tables

Table 2.1	Human perception levels	24
Table 2.2	Drift calculation results for 10 storey moment resisting frame	26
Table 2.3	Drift results from SAP 2000 analysis	27
Table 3.1	Grade of concrete and their properties, as per BS8110	33
Table 3.2	Recommended basic wind speed for Sri Lanka	34
Table 3.3	Regional wind speeds - V _R (AS/NZS 1170.2: 2002)	43
Table 5.1	Natural period of frequency and fundamental period of 40 storey	
	building	64
Table 5.2	Wind induced acceleration for 40 storey building	64
Table 5.3	Summary of Analysis Results of 40 storey building	64
Table 5.4	Natural period of frequency and fundamental period of 35 storey	
	building	66
Table 5.5	Wind induced acceleration for 35 storey building	66
Table 5.6	Summary of Analysis Results of 35 storey building	66
Table 5.7	Natural period of frequency and fundamental period of 30 storey	
	building ww.lib.mrt.ac.lk	68
Table 5.8	Wind induced acceleration for 30 storey building	68
Table 5.9	Summary of Analysis Results of 30 storey building	68
Table 5.10	Natural period of frequency and fundamental period of 25 storey	
	building	70
Table 5.11	Wind induced acceleration for 25 storey building	70
Table 5.12	Summary of Analysis Results of 25 storey building	70
Table 5.13	Natural period of frequency and fundamental period of 20 storey	
	building	72
Table 5.14	Wind induced acceleration for 20 storey building	72
Table 5.15	Summary of Analysis Results of 20 storey building	72
Table C.1	Calculation of wind force per unit area – 40 storey building	93
Table C.2	Calculation of wind loads on grid locations as point loads in 40	
	storey building	95
Table C.3	Calculation of wind acceleration – 40 storey building	96
Table C.4	Calculation of wind loads on grid locations in 40 storey building	
	(for wind acceleration)	98

Table C.5	Calculation of wind force per unit area – 35 storey building	99
Table C.6	Calculation of wind loads on grid locations as point loads in 35	
	storey building	101
Table C.7	Calculation of wind acceleration – 35 storey building	102
Table C.8	Calculation of wind loads on grid locations in 35 storey building	
	(for wind acceleration)	104
Table C.9	Calculation of wind force per unit area – 30 storey building	105
Table C.10	Calculation of wind loads on grid locations as point loads in 30	
	storey building	107
Table C.11	Calculation of wind acceleration – 30 storey building	108
Table C.12	Calculation of wind loads on grid locations in 30 storey building	
	(for wind acceleration)	110
Table C.13	Calculation of wind force per unit area – 25 storey building	111
Table C.14	Calculation of wind loads on grid locations as point loads in 25	
	storey building	113
Table C.15	Calculation of wind acceleration – 25 storey building	114
Table C.16	Calculation of wind loads on grid locations in 25 storey building	
	(for wind acceleration)	116
Table C.17	Calculation of wind force per unit area – 20 storey building	117
Table C.18	Calculation of wind loads on grid locations as point loads in 20	
	storey building	118
Table C.19	Calculation of wind acceleration – 20 storey building	119
Table C.20	Calculation of wind loads on grid locations in 20 storey building	
	(for wind acceleration)	121