

ZERO EFFLUENT SOLUTION FOR DETERGENT INDUSTRY

D.H. Dayananda

(06/8833)

This dissertation is submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental

Management

Department of Civil Engineering University of Moratuwa Sri Lanka

December 2010

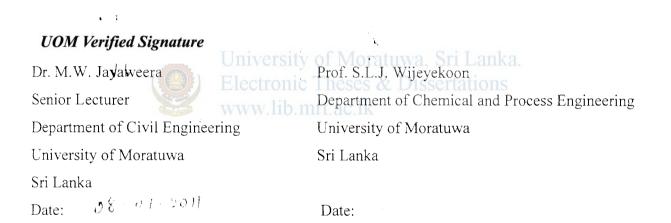
University of Moratuwa 96453

96453

DECLARATION

I declare that this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Signature:


Date: 54/01/201

 D.H.Dayananda of Moratuwa, Sri Lanka.
Electronic Theses & Dissertations www.lib.mrt.ac.lk

Supervisor's declaration

This is to certify that this thesis submitted by D.H. Dayananda is a record of candidate's own work carried out by her under our supervision. The matter embodied in this thesis is original and has not been submitted for the award of any other degree.

Research Supervisors

ACKNOWLEDGMENT

I wish to express my sincere gratitude to Dr. Mahesh Jayaweera, the supervisor Department of Civil Engineering for giving me the first opportunity to work in real industrial environment and his valuable advice, suggestions and encouragement during the Master of Science in environmental management study.

I also wish to express my sincere gratitude to Dr. Suren Wijeyekoon, the co-supervisor, Department of Chemical & Process Engineering for his intellectual guidance, assistance and advice rendered for successful completion of this research project.

I am thankful to the course coordinator Dr. Jagath Manathunga for his encouragement and valuable support for the successful completion of this project.

I also wish to sincerely thank Mr. Prasad Suraweera (Puritaz pvt. Ltd.) and Mr. Chinthaka widanapathirena (Industrial Development Board) for giving technical support to me to successfully complete this project.

www.lib.mrt.ac.lk

A major part of my research work has been done at the Environment Engineering Laboratory, Department of Civil Engineering, at the University of Moratuwa. My gratitude is due to the laboratory staff who gave their support in numerous ways in successfully carrying out this project.

I am also grateful to Mr. Dayantha De Silva (the chairman), Mrs. Ransi De Silva (the managing director) and all employees of S & D Associates for their support and assistance.

I wish to thank my loving parents, and my husband for the encouragement given to me to make this study a success.

ABSTRACT

Reuse of industrial wastewater is an important strategy for reducing freshwater consumption and wastewater generation as well as minimizing the potential impact of effluent on the environment. From an economic perspective, wastewater reuse reduces the costs of freshwater consumption and wastewater disposal.

Wastewater is to be adequately treated prior to disposal. Surfactants including detergents are refractory organics that resist conventional treatment methods and therefore need an advance wastewater treatment. However, the cost of wastewater regeneration and treatment rises exponentially with increasing contaminant removal efficiency. In order to balance these competing cost factors wastewater disposal costs vs. wastewater regeneration and treatment cost has to be considered.

This case study of the zero effluent solution provides experience in cost effective management of effluent as a resource, with minimizing the potential impact of effluent on the environment. The overall objective was to recycle wastewater as a resource for liquid detergent manufacturing process. Special attention is being given to control of unpleasant odour, maximization of reuse of surfactants and establishment of proper hygienic conditions in treated effluent.

The results of wastewater characterization showed that the concentration of the organic matter is very high, expressed as COD ranging from 6,200 mg/l to 34,400 mg/l, while the biodegradable portion was very low, since BOD/COD ratio was low. These values indicate that organic compounds are not easily subjected to biological treatment. In order to ensure the maximum reuse of surfactants and other important chemicals only physical treatments were adopted. They were aeration, filtration followed by UV disinfection.

Two major limiting factors in the case of reuse wastewater were identified specific to this case study. (ie. Unfavorable odour experienced in collection sumps and contaminated with pathogenic micro organisms.) The proposed treatment can successfully solve these issues ensuring maximum reuse of important constituents in the effluent. More than this, it can reduce TSS up to 5μ particle size, which is more beneficial in reuse for production process. The treated effluent is best for use in coloured products.

CONTENT

DECLARATION OF THE CANDDATE	ii
DECLARATION OF THE SUPERVISOR	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	х

TABLE OF CONTENTS

1.0 INTRODUCTION

1.1	Detergent Industry	1
1.2	Current Trends in Detergent Industry	2
1.3	Reuse of wastewater	2
1.4	Introduction to the case study	3
1.4.1	Management of storm water	3
1.4.2	Treatment of gray water v of Moratuwa, Sri Lanka.	4
1.4.3	Industrial wastewater in Theses & Dissertations History of the problem	5
1.5	History of the problem	5
1.6	Research problem hib.mrt.ac.lk	6
1.7	Objectives of the study	7
1.8	Overall picture of water usage	7
1.9	Significance of the study	8

2.0 LITERATURE REVIEV

Surfactants and other additives in detergent formulations	9
Other additives in detergent manufacturing	11
Foam in consumer products	12
Formula – general characteristics	13
Detergent biodegradation	13
Surfactants and wastewater treatment	17
Detergent wastewater treatment & reuse	18
Aeration and control of odour in waste water	19
Filtration	20
Disinfection	21
	Other additives in detergent manufacturing Foam in consumer products Formula – general characteristics Detergent biodegradation Surfactants and wastewater treatment Detergent wastewater treatment & reuse Aeration and control of odour in waste water Filtration

3.0 MATERIALS AND METHODS

3.1	Problem analysis	22
3.2	Approach to the solution	24
3.3	Financial viability of the project	24

4.0 OBSERVATIONS, DATA AND RESULTS

General Characteristics of effluent	26		
•	26 27		
	28		
	29 29		
-	30		
-			
Comparison of pH	31 31		
Important characteristics of water use for production	32		
	32		
	33		
	33		
Field trial of aeration	34		
Proposed Industrial effluent treatment plant	37		
Financial cost benefit analysis for the implementation of proposed treatment plant	38		
	Important characteristics of water use for production Ground water pH Microbiological examination of the water use for the production Characteristics of the low grade product Field trial of aeration Proposed Industrial effluent treatment plant Financial cost benefit analysis for the implementation of proposed		

5.0 ANALYSIS AND DISCUSSION

5.1	Analysis of the problem	41
5.2	General Characteristics of the Industrial Effluent	42
5.2.1	Total Suspended Solids (TSS)	42
5.2.2	Dissolved Oxygen (DO)	43
5.2.3	Biological Oxygen Demand (BOD5)	43
5.2.4	Chemical Oxygen Demand (COD)	44
5.2.5	pH	44
5.2.6	Microbiological Examination (Fecal and Total Coliform)	45
5.3	Microbiological Examination of the low grade product	45
5.4	Microbiological Examination of the sources of water	46
5.5	Added values of the industrial effluent	47

5.6	Approach to the solution	49
5.7	Design of the Treatment	50
5.7.1	Aeration	50
5.7.2	Filtration	52
5.7.3	Disinfection	53
5.8	Usages and Limitations of treated effluent	54
5.9	Cleaner Production Options to minimize the contamination of colour	55
5.10	Financial Cost Benefit Analysis of new implementation	56

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 6.2	Conclusions Recommendations	57 60
7.0	LIST OF REFERENCES	61
8.0	LIST OF ANNEXES	62

Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

Table 2.1: The various types of aeration systems and their applications	19
Table 3.1: Test methods used for test the general characteristics	23
of wastewater and the product	
Table 4.1: Analysis of reusable surfactant levels in the effluent	31
Table 4.2: Characteristics of the water used for the industrial process	33
Table 4.3: Characteristics of the low grade product prepared from	34
untreated effluent	
Table 4.4: Variation of DO and COD in aeration trial	35
Table 4.5: Results of the financial cost benefit analysis for selected	40
three different time period.	
ANNEX – B Tables of data collected on different parameters for	64
general characteristics of industrial effluent (B -1 to B-8)	

LIST OF FIGURES

Fig: 4.1:	Variation of TSS at S1, S2 and S3 collection sumps	27
Fig: 4.2:	Variation of DO at S1, S2 and S3 collection sumps	28
Fig: 4.3:	Variation of BODs at S1, S2 and S3 collection sumps	28
Fig: 4.4:	Variation of COD at S1, S2 and S3 collection sumps	
Fig: 4.5:	Variation of the density of total coliform at S1, S2	30
	and S3 collection sumps	
Fig: 4.6:	Variation of the density of fecal coliform at S1, S2 and	30
	S3 collection sumps	
Fig: 4.7:	Variation of the pH at S1, S2 and S3 collection sumps	32
Fig: 4.8:	Measured ground water pH levels	32
Fig: 4.9:	Variation of the DO levels within the aeration time	36
Fig: 4.10:	Variation of the COD levels within the aeration time	36
Fig. 5.1:	Foam produced in the aeration	47
Fig. 5.2:	Process flow diagram of the design	50
Fig. 5.3:	Comparison – untreated effluent & low grade product	55

LIST OF ABBREVIATIONS

BOD	:	Biological Oxygen Demand
COD	:	Chemical Oxygen Demand
DO	:	Dissolved Oxygen
TSS	:	Total Suspended Solids
VOC	:	Volatile organic chemicals
NTU	:	Nephelometric Turbidity Units
μS	:	Micro siemens
UV	:	Ultra Violet
gpm	:	gallons per minutes
IDB	:	Industrial Development Board
ITI	:	Industrial Technology Institute
SLSI	:	Sri Lanka Standards Institute
MSDS	: 1	Material safety data sheets
MPN	Bi E	Most probable number Dissertations
LABSA	5: V	Linear alkyl benzene sulfonic acid
ABS	:	Alkyl benzene sulfonate
NPV	:	Net profit value
IRR	:	Initial rate of return
B/C	:	Benefit to cost ratio