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Abstract 

 

Soil structure investigation is very important in many Engineering applications. The 

Electrical Engineers extensively use the soil structure information when designing 

grounding systems. The sub soil structure with its resistivity distribution has a direct 

impact on the performance of the grounding system, that is, the electrode resistance 

and the surface voltage distribution. 

 

In Applied Geophysics a variety of soil structure investigation methods are used. 

Among these, the Electrical Resistivity Method has become very popular due to its 

simplicity. The resistivity method measures apparent resistivity of the ground to a 

direct current flow. The field data contain apparent resistivity values and geometry 

information. When the field data is interpreted, it detects the discontinuity of 

resistivity distribution in a location of interest. This interpretation can be done One 

dimensionally( lD), Two-dimensionally (2D) or Three-dimensionally (3D) 

depending on the application's necessity. The interpretation of resistivity field data 

using inversion techniques may be ambiguous. Conventional ID DC resistivity 

inversion techniques include graphical methods requiring interpolation and judgment 

and computer based iterative calculation methods. 

 

The work presented in this thesis, investigates a new resistivity data inversion tool, 

Neural networks(NNs). Neural Networks are capable of solving several types of 

problems, including  parameter estimation, parameter prediction, pattern recognition, 

classification and optimization. Also recently the use of Neural Networks in the 

Geophysics parameter estimation problems has Shown strong results. With this 

recent trend in the applicability of the NN's for the non linear geophysical inversion 

problems NN's is proposed as the inversion tool for parameter estimation or Sub 

surface interpretation. The main intention of this study is to investigate the 

applicability of NNs as a fast and accurate inversion tool for field resistivity data. 

The study considers the approach and capabilities of the NNs in inversion of field 



  

resistivity data to interpret ID, 2D or 3D sub soil Structure with resistivity 

discontinuities. 
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