LBDON SCHORE

UNIVERSITY OF LONDON

IMPERIAL COLLEGE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRICAL ENGINEERING

පුස්තකාලය මොරටුව විශ්ව විදතාලය, නිු ලංකාව ශමාරටුව,

POWER SYSTEM GENERATION AND TRANSMISSION PLANNING USING PROBABILITY METHODS

2.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk Abhaya Samarath Induruwa

51793

51793

Thesis submitted for the degree of Doctor of Philosophy in Engineering.

London, January 1980

ABSTRACT

Power system planners are constantly faced with the problem of finding the optimal way of designing, constructing and operating their systems to satisfy variable consumer demands in an environment of uncertainty.

Of the numerous phases of power system planning, the areas of long term generation planning, reservoir operation planning and transmission system planning have been selected for the studies reported in this thesis. The presence of inherent uncertainty in all these phases is recognised and the use of probabilistic solution methods is emphasised throughout.

The application of long term generation planning procedures to various power systems is illustrated and an interactive solution strategy is discussed. As the computing times for the integer optimisation techniques are generally high, a method of modifying the system constraints to reduce computing times without losing the accuracy of the solution is developed. Electronic Theses & Dissertations Reductions of computing times by up to 40% have been realised using this WWW.10.mrt.ac.K

method of modified constraints.

The uncertainty in water inflow to long term storage reservoirs is dealt with by using stochastic dynamic programming techniques. The optimum use of water storage in a mixed hydro-thermal system to reduce thermal power generation is illustrated. Cascaded or parallel operated hydro plants can be simplified to a single equivalent reservoir using the composite reservoir representation.

Adequacy of the transmission system is tested by calculating the reliability parameters at each consumer load point and also calculating overall system performance indices. As these indices are compatible with those used for distribution system reliability evaluation, they form a set of starting values for these studies. The applicability of

the method to medium sized power systems is demonstrated by using the Sri Lanka power network as an example.

3

Other areas which need to be explored more are identified and suggestions are made for further developments.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk లు సజ్ రించి కాబార్రిశాడె రికాన క్రాబిస్ కార్పెర్ కార్ నార్తు కార్యాల్ కార్యం కార్యం కార్యం కార్యం కార్యం కార్యం కార్యం కార్యం కార్యం కారు

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

> To my parents relatives & teachers for their inspiration.

ACKNOWLEDGEMENTS

The work presented in this thesis was carried out under the supervision of Dr B J Cory, DSc(Eng), BSc(Eng), ACGI, CEng, FIEE, MIEEE, Reader in Electrical Engineering, Imperial College of Science and Technology, London. I wish to express my deepest gratitude for his invaluable guidance, constant encouragement and keen interest throughout this project.

I am grateful to the Commonwealth Scholarship Commission in the United Kingdom for the award of a scholarship and the British Council, London, for its administration. I am also grateful to the University of Moratuwa, Sri Lanka, for granting me study leave which made possible to pursue this work.

I wish to express my appreciation to Mr A J McKechnie, Consulting Engineer, Kennedy & Denking for providing the data for the case studies, to the colleagues in the power Systems Section and to all those who www.lib.mrt.ac.lk helped in various ways to make this a success.

Finally I wish to thank my wife for her continued support, especially during the final stages of this work.

TABLE OF CONTENTS

			Page		
ABSTRACT	-		2		
ACKNOWLEDGEMENTS					
CONTENTS	CONTENTS				
LIST OF	FIGUR	RES	9		
LIST OF	TABLE	IS	10		
CHAPTER	1:	INTRODUCTION	11		
	1.1	General Considerations in Power System Planning	11		
	1.2	Economic Coordination of Power Systems	12		
	1.3	Load Forecasting	14		
	1.4	Investment Policies and the Importance of Load Management	15		
	1.5	Generating System Cost Analysis	16		
		1.5.1 Hydro Power Plants	18		
		1.5.2 Fossil Fired Power Plants	18		
	100 m	1.5.Jinnuciearofd branants, Sri Lanka.	18		
		h.5.4cccashtarbhasceoverDesactations	19		
	3	1.515VVGeothermalCrower Plants	19		
		1.5.6 Alternative Energy Sources	19		
	1.6 [.]	Investment Planning	20		
	1.7	Reactive Power Generation Planning	20		
	1.8	Planning and Investing for Reliability	21		
	1.9	Summary of the Study	22		
	1.10	Conclusions	24		
CHAPTER	2:	LONG TERM GENERATION PLANNING USING INTEGER PROGRAMMING AND PROBABILISTIC SIMULATION	25		
	2.1	Introduction	.25		
	2.2	Balance of Plant Types and Capacities	27		
	2.3	Mathematical Models in Generating System Planning	28		
		2.3.1 Basic LP Algorithm	29		
		2.3.2 Problem Formulation Using CCM	31		
		2.3.3 Branch & Bound Method	34		
		2.3.4 Generalised Branch & Bound (GBB) Method	34		
	•	2.3.5 Application of the GBB Method to the Problem of Generation Planning	36		

		2.3.6	p Modified BB Method	age 37
		2.3.7		38
	2.4	Simula	tion Models in Generating System Planning	38
		2.4.1	Reliability Indices	40
		2.4.2	Probabilistic Generating Unit Model	41
		2.4.3	Two State Representation of Generating Units	42
		2.4.4	Representation of Partial Outages	43
		2.4.5	Repair and Maintenance	44
		2.4.6	The Effective Load Carrying Capability (ELCC) of a .Generating Unit	46
		2.4.7	Probabilistic Load Model	46
		2.4.8	Load Duration Curve as a Load Model	48
		2.4.9	Change in Load Factor due to Increase in Minimum Demand	49
		2.4.10	Seasonal Variation of Parameters	50
	·2 . 5	Compar	ison & Evaluation of Reliability Indices	51
		2.5.1	Relationship between LOLP and Margin Frequency Indices	54
		2.5.Ur	Frefenyioqireoratuwa, Sri Lanka.	55
		21.5.01	Calenietinests WLDissE(UE) Andices	56
	2.6	Genera	tion System Expansion Cost Analysis	59
		2.6.1	Corporate Modelling in Geneation Planning	59
		2.6.2	Probabilistic Production Costing	61
CHAPTER	3:		ES & INTERACTIVE EXPERIENCE ON GENERATION	69
	7 1	Franci		60
	J•1	3 1 1	Interactive Solution Procedure	70
	,	3.1.1.1	Step 1: Aptimisation	70
		3.1.1.2	Step 2: Simulation	71
	3.2	Example	a 2	73
	3.3	Example	e 3	75
	3.4	Conclu	sions	76
CHADTER	4.	RESERVI	TTR ODERATION & CONTROL LISING STOCHASTIC	90
		DYNAMI	C PROGRAMMING	
	4.1	Introd	uction	90
	4.2	Formula	ation of the Problem	93
		4.2.1	The Objective Function	93
		4.2.2	Hydro Operating Policy	94
	•			

3

б

				ł	Page
		4.2.3 Hydro	Reservoir Model		95
	•	4.2.4 Hydro	Electric Generation	I	96
	4.3	Computational	l Procedure		. 97
		4.3.1 Fuctio	onal Equation		97
		4.3.2 Evalua	ation of the Functio	nal Equation	98
		4.3.2.1 Hydro	Plant Operating in	the Peak Region	98
		4.3.2.2 Hydro	Plant Operating in	the Base Load Region	n 98
		4.3.2.3 Hydro Peak	Plant Operating in load region	the Base Load and	99
		4.3.3 Stochas	stic Hydrology		100
	4.4	Composite Rea	servoir Representati	.on	101
	4.5	Application o	of the Method		102
	4.6	Conclusions			102
CHAPTER	5 ;	EVALUATION O	F RELIABILITY INDICE	es fo r	109
		TRANSMISSION	PLANNING		
	5.1	Introduction			109
		5.1.1 Reliat	ility of Transmissi	on Systems	110
(5.1.2 Histor	rical Backgrounderta	tions	110
	5,2	Conditional 1	Probability Approach		112
	5.3	Fast Decouple	ed Load Flow		114
	5.4	Stochastic Lo	bad Flow (SLF)		117
		5.4.1 Mather	natical Model for SL	.F	117
		5.4.2 Appli	cation to the Power	Flow Problem	119
		5.4.3 Extens	sions of the SLF Tec	chnique	120
	5.5	Failure of Co	onsumer Load Points		122
		5.5.1 System	n Load Model		122
		5.5.2 Trans	nission Network Mode	el	124
		5.5.3 SLF U	sing Load Model of S	Section 5.5.1	126
		5.5.4 Calcul Voltag	lation of Probabilit ges Outside Operatir	ties of Bus ng Limits	128
		5.5.5 Calcu	lation of the Probat	oility of line	128
		Overla	bad		
		5.5.6 Calcu Consur	lation of Probabilit mer Load Points	ties of Failure of	130
		5.5.7 Calcu	lation of Sensitivit	ty Factors	131
		5.5.8 Effec of Co	ts of Generator Outa nsumer Load Points	ages on the Failure	134
	5.6	Overall Syst	em Performance Indic	ces	134
		5.6.1 Calcu	lation of Service Fa	ailure Probability	134

ት

					Page
			5.6.2	Calculation of Unserved Energy	136
			5.6.3	Calculation of the Critical Load Using the Proposed Method	137
		5.7	Applica	ation of the Method and Results	137
			5.7.1	IEEE 14 Bus Test Power System	138
			5.7.2	40 Bus Sri Lanka Power System	138
		5.8	Conclus	sions	1 39
	CHAPTER	6:	CONCLUS	SIONS	150
		6.1	The Rol	Le of the System Planner	150
		6.2	Summary	y of the Thesis and Contributions	151
		6.3	Suggest	tions for Further Development	155
	APPENDI	X A1	BRANCH	& BOUND METHODS	156
•.		A1.1	Definit	tions	156
		A1.2	Intege	r Programming Problem	156
		A1.3	Branch	& Bound Method	157
			A1.3.1	Method of Branching	158
		A1.4	Genrali	ised Branch & Bound Method	159
		5	A1 . 4.1	Jiselentitygoé Koostraint, Sri Lanka.	160
			A1.4.2	Eleptroxicating as constraintations	161
		0=0	N N	vww.lib.mrt.ac.lk	
	KFFFKFW	սեն			166

LIST OF FIGURES

		· ·	Page
Fig.	2.1	Simplified Flow Chart for Modified BB	63
Fig.	2.2	Generating Unit State Space Diagram	64
Fig.	2.3	Three State Model to Include Maintenance	64
Fig.	2.4	Load Probability Distribution	64
Fig.	2.5	Duration Load Curve	6 5
Fig.	2.6	Increase in Minimum Demand from Period t to t+1	65
Fig.	2.7	Illustration of the Modification of Coefficients	: 65
Fig.	2.8	Equivalent Load Curve	66
Fig.	2.9	Simplified Block Diagram of a Corporate Model	67
Fig.	3.1	Combined Optimisation and Simulation	77
Fig.	4.1	Optimal Position of Hydro Plant in the Dispatching	· 104
		Schedule	
Fig.	4.2	Representation of the Optimal Position of Hydro	104
Fig. Fig.	4. 3 4. 4	Plant on the Load Energy Curve University of Moratuwa, Sri Lanka. Read-Storage Curve for a Typical Reservoir Electronic Theses & Dissertations 6 3 Results for an Initial Storage of 750 x 10 m WWW.Hb.mrt.ac.K	105 106
Fig.	5.1	Variation of Daily Load with Time	1 41
Fig.	5.2	Network State Transition Diagram	141
Fig.	5.3	Two State Load Model	142
Fig.	5.4	IEEE 14 Bus Test Power System	142
Fig.	5.5	Proposed Generation & Transmission Network for 1985	143
Fig.	5.6	Proposed Transmission Network for Sri Lanka Power	144
		System (1985)	
Fig.	A1.1	Convex Polytope and the Convex Hull of Feasible	165
Fig.	A1.2	Variation of F(x) with x	165

* Figures are attached at the end of each Chapter.

LIST OF TABLES

5

Ø.

			Page
Table	2.1	Data and results for two typical systems	68
Table	3.1	Basic plant data	78
Table	3.2	Load forecast data	79
Table	3.3	Initial plant factors	79
Table	3.4	Generation structure obtained from iteration 1	80
		Step 1: Optimisation	
Table	3.5	Estimated palnt factors for NEL plants from	80
		iteration 1, Step 2: Simulation	
Table	3.6	Results from iterations 1,2 & 3	81
Table	3.7	Generation structure obtained from iteration 4	82
		Step 1: Optimisation	
Table	3.8	Expected plant factors for NEL plants from iteration 4	82
Table	3.9	Results from the simulation in iteration 4	83
Table	3.10	Results from the seasonal simulation study	84
Table	3.11	Basic plant data	85
Table	3.12	maximum plant capacities in each year	86
Table	3.13	Reserve margins	86
Table	3.14	Generation structure from iteration 4	87
Table	3.15	Plant factors from simulation	88
Table	3.16	Solution 1	89
Table	3.17	Solution 2	89
Table	4.1	Probability distribution of monthly inflows	107
Table	4.2	System data for the operation study	108
Table	5.1	Line outage data	145
Table	5.2	Generator outage data	145
Table	5.3	Load busbar failure probabilities and frequencies	146
		IEEE 14 Bus Test Power System	
Table	5.4	Proposed Sri Lanka Power System for 1985	147
		Busbar identification	
Table	5.5	Line and Transformer outage data	148
Table	5.6	Load busbar failure probabilities and frequencies	149
		40 Bus Sri Lanka Power System	

* Tables are attached at the end of each Chapter.