LE/DON/169/1940

DCE 03/01

13

THE PERFORMANCE OF SEPTIC TANKS

By CHAMPIKA KARUNATILLEKE

This thesis submitted to the Civil Engineering Department of the Faculty of Engineering University of Moratuwa, Sri Lanka

> For the degree of Master of Engineering June, 1990

> > 54940

UM Thesis coll.

MEng en Civil Engencesing

This thesis has not been previously presented in whole or part to any University or Institution for a higher degree.

.

UOM Verified Signature

C Karunatilleke June, 1990

and the last study . In sections of this

ABSTRACT

Every community produced both liquid and solid wastes. The liquid portion which is called wastewater may be defined as a combination of the liquid or water-carried wastes removed from residences, institutions, and commercial and industrial establishments. This wastewater renders potential threat to the environment. The problem due to domestic wastewater will be encountered at all places where human being dwell and this causes a great hazard.

The management of wastewater discharged from single houses, housing schemes, hotels, schools and other institutions which is not connected to central sewerage system due to high cost of providing sewers is a major problem in developing countries similar to Sri Lanka. Septic tank which does not rely upon abundant water or skilled attention is a very good solution to this problem.

The objective of a septic tank is to remove a high percentage of suspended solids, biochemical oxygen demand and pathogens. This is achieved by proper design and construction of the tank, considering the climatic and other site conditions. The objective of this research was to collect base-line data on the performance of septic tanks under tropical conditions by observing changes in wastewater quality and rate of accumulation of sludge in several selected septic tanks. The collected data would be useful in the evaluation of codes of practice for the design and maintenance of septic tanks under local conditions.

Four tanks in the Railway Quarters at Ratmalana and a communal septic tank at Kinderwatte Housing Scheme at Dehiwela were selected for the study. In addition to this performance of an upflow anaerobic filter connected to the communal septic tank was also studied. From these five tanks, one tank at Ratmalana was selected only for monitoring of depth of sludge. The preliminary studies of all the other tanks were carried out. After these studies, one tank from Ratmalana and the communal tank at Dehiwela were selected for detailed studies.

In both of these studies, biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), and bacterial counts (faecal and total coliforms) of the liquid inside first and second compartments of each tank were determined. In the preliminary studies of communal tank, samples were collected only from the first compartment. In the preliminary studies, the variation within a very short time interval and hourly variation of parameters were studied, whereas in the detailed studies the data were analysed to find the removal efficiencies of each parameter and also some correlations were obtained between removal efficiencies with loading rates and rate of wastewater flow.

The performance of upflow filter was studied under detailed studies.

It was found that the characteristics of wastewater within a septic tank has a very high variation within a short period of time. The hourly variation of parameters did not appear to follow a common pattern among the tanks.

From the two tanks selected for the detailed studies a consistently better performance was observed in the communal tank.

The sludge accumulation rates (calculated from depth of sludge measurements) of 9, 12, 21 and 20 l/pa were observed in the first compartment of Tank Nos. 1,2 and 4 at Ratmalana and in communal tank at Dehiwela respectively.

ACKNOWLEDGEMENT

I acknowledge with gratitude Professor Willie Mendis and late Professor C. Patuvathavithana the former Vice Chancellors of University of Moratuwa who provided me the necessary facilities to carry out this project.

I am also thankful to ODA for providing funds for this project.

I am deeply indebted to Professor D.C.H. Senerath the former Head of Department of Civil Engineering who voluntarily helped me by providing valuable advice and encouragement throughout the research.

The help and advice given by Professor L.L. Ratnayake the present Head of Department of Civil Engineering is gratefully acknowledged.

I am grateful to Mrs. N. Ratnayake my Supervisor who very generously spared her precious time and provided every guidance to carry out this difficult task.

I am also thankful to Dr. Andrew Cotton and Mr. Mike Smith, lecturers of Loughbourough University of Technology, UK, for their constructive suggestions and for providing most of the literature related to this project, and also for guiding the research from its inception.

Staff members of Department of Civil Engineering of University of Moratuwa who gave valuable suggestions and advice are also remembered with thanks.

The assistance given by Mr. Premasiri and other staff members of CGR office at Ratmalana in making necessary arrangements to collect wastewater from septic tanks is gratefully appreciated.

I am also thankful to Mrs. Nilanthi Gunathilleke & Mr. Justin Silva of the Environmental Engineering Laboratory and also Mr. N. Wijewardana and his staff who helped in the collection and analysis of samples. I extend my sincere thanks to Mr. S. Gunathilleke who assisted in drawing and tracing figures and Ms. D. Rodrigo who processed the thesis script.

The assistance given by Mrs. Lakshmi De Silva is also remembered with thanks. The services rendered by Messrs. Somaratne, Dayaratne, Udaya Shantha, Sunil Shantha, and Piyadasa of University of Moratuwa are also appreciated.

I am grateful to Mr. Prathapa Wettasinghe who was promoting my aspirations all the time to carry out the project work to completion.

At last but not the least I wish to express my gratitude to my friends and colleagues for their encouragement and assistance rendered to me in completing this project.

	TABLE OF CONTENTS	Page No:
(i) (ii) (iii) (iv) (v) (v) (vi)	Abstract Acknowledgement Table of Contents List of Figures List of Tables Notations	i iii v xii xvi xvi xxi
CHAPTER	1 INTRODUCTION AND THEORY	
1.1	INTRODUCTION	1
1.1.1	THE NECESSITY OF WASTEWATER TREATMENT	1
1.1.2	CHARACTERISTICS OF WASTEWATER	3
1.1.2.1 1.1.2.2	Wastewater Flow Wastewater Composition	3 3
1.1.3	SEPTIC TANKS	4
1.1.3.1 1.1.3.2 1.1.3.3	Process Within the Tank	4 5 5
1.1.3.4 1.1.3.5	Digestion Main Steps of Anaerobic	8 8
1.1.3.6	Reactions Advantages of Anaerobic Treatment	11
1.2	SCOPE OF THE PROJECT	12
1.3 ¥	THEORETICAL CONSIDERATIONS OF VASTEWATER QUALITY PARAMETERS	13
1.3.1	BIOCHEMICAL OXYGEN DEMAND - BOD	13

1.3.1.1 General Considerations	13
1.3.1.2 Nature of BOD Reaction	14
1.3.1.3 Variation of BOD	15
1.3.2 CHEMICAL OXYGEN DEMAND -	17
COD	
1.3.2.1 General Considerations	17
1.3.2.2 Chemical Oxygen Demand by	18
Dichromate	
1.3.2.3 Measurement of Excess	18
Oxidizing Agent	
7 1. 7 CRUTTER LAN THE	
1.3.3 THE BACTERIOLOGICAL EXAMINATION	19
1.3.3.1 General Considerations	19
1.3.3.2 Membrane Filteration Techniques	20
	21
CHAPTER 2 A REVIEW OF PREVIOUS	21
LITERATURE	
2.1 DESIGN AND CONSTRUCTION OF A	21
SEPTIC TANK	21
SEFIIC INWR	
2.1.1 DESIGN OBJECTIVES OF A SEPTIC	21
TANK	
2.1.2 WATER CONSUMPTION AND SEWAGE	21
FLOW	
2.1.3 RATE OF SLUDGE AND SCUM	22
ACCUMULATION	
2.1.4 RETENTION TIME WITHIN THE TANK	27
2.1.5 DESLUDGING CYCLE	29
2.1.6 CAPACITY	29
2.1.7 SHAPES AND DIMENSIONS	31
2.1.8 COMPARTMENTATION	33
2.1.9 INLET AND OUTLET DEVICES	34
2.1.10 VENTILATION	40

2.2	PERFORMANCE OF SEPTIC TANKS	40
2.3	MAINTENANCE	41
	SECONDARY TREATMENT OF EFFLUENT FROM SEPTIC TANKS	42
2.5	UPFLOW ANAEROBIC FILTERS	43
	INTRODUCTION SYSTEM DESIGN	43 43
2.5.3	DESIGN CRITERIA	45
	-	45 45 46 46
2.5.4	DIFFERENT DESIGN CONFIGURATIONS	47
2.5.4.1 2.5.4.2 2.5.4.3	Polprasert and Hoang's Design	47 49 49
2.5.5	APPLICATION	49
2.5.6	PROBLEMS ASSOCIATED WITH ANAEROBIC FILTERS	53
2.5.7	START-UP OF AN ANAEROBIC FILTER	53

CHAPTER 3	TESTING PROGRAMME AND EXPERIMENTAL TECHNIQUES	55
3.1	DETAILS OF SEPTIC TANKS SELECTED FOR THIS STUDY	55
3.2	PROPOSED TESTING PROGRAMME	61
3.2.1	PRELIMINARY STUDIES	61
3.2.1.1 3.2.1.2 3.2.1.3	Repeatability Studies Variability Studies Hourly Variations	61 64 64
	DETAILED STUDIES SAMPLING AND STORAGE MEASUREMENTS OF DEPTH OF SLUDGE	64 65 66
3.3	APPARATUS	66
3.3.1	LIGHT PENETRATION METHOD	66`
3.4	EXPERIMENTAL TECHNIQUES	68
3.4.2	BIOCHEMICAL OXYGEN DEMAND CHEMICAL OXYGEN DEMAND MEMBRANE FILTER TECHNIQUE FOR MEMBERS OF THE COLIFORM GROUP (TOTAL & FECAL COLIFORMS)	68 69 70

CHAPTER 4	RESULTS AND DISCUSSION	72
4.1	THEORY FOR CALCULATIONS	72
'1 . L	TAEORI FOR CALCULATIONS	12
4.1.1	SELECTION OF SAMPLE VOLUMES FOR COMPOSITING	72
4.1.2	VOLUMETRIC LOADING RATE	73
4.1.3	RETENTION TIME REMOVAL EFFICIENCIES	73
4.1.5	VARIATION OF REMOVAL EFFICIENCIES	· 74
	WITH LOADING RATES	15
4.2	RESULTS	76
4.2.1	RESULTS OF PRELIMINARY STUDIES	76
4.2.1.1	Repeatability Studies	76
4.2.1.2	Variability Studies	76
4.2.1.3	Hourly Variations	77
4.2.2	RESULTS OF DETAILED STUDIES	77
4.2.2.1	COD-SS Relationship	77
4.2.2.2	Variation of Removal Efficiencies	89
4.2.2.3	With Loading Rates Rate of Accumulation of Sludge	89
	CHATTER OF CON	
4.3	DISCUSSION OF RESULTS	100
4.3.1	PRELIMINARY STUDIES	100
4.3.2	DETAILED STUDIES	107
4.3.3	THE PERFORMANCE OF UPFLOW	110
4.3.4	ANAEROBIC FILTER RATE OF SLUDGE ACCUMULATION	113
4.3.4	ANALYSIS OF RESULTS WITH RESPECT	116
	TO THE CODES OF PRACTICE FOR	
	DESIGN AND MAINTENANCE	

ix

CHAPTER !	5 CONCLUSION AND RECOMMENDATIONS	121
LIST OF 1	REFERENCES	123
APPENDIX	I BASIC STEPS IN LABORATORY TESTS	127
	ASIC STEPS IN THE DETERMINATION F BOD	127
λ.1.2 λ.1.3	PREPARATION OF SAMPLES FIXING THE DISSOLVED OXYGEN TITRATION PROCEDURE CALCULATION OF BOD	127 127 128 128
A.2	BASIC STEPS IN THE DETERMINATION OF COD (OPEN REFLUX METHOD)	129
A.2.1	PREPARATION OF SAMPLES AND METHOD OF TITRATION	129
A.2.2	STANDARDISATION OF FAS SOLUTION	129
A.2.3	CALCULATION OF COD	130
A.3	BASIC STEPS IN THE DETERMINATION OF SS CONTENT	130
A.3.1	SAMPLE ANALYSIS	130
λ.4	DETERMINATION OF COLIFORM (TOTAL & FECAL) COUNT	131
A.4.1 A.4.2	PROCEDURE RESULTS	131
A. 4. 6	RESULTS.	1.5/

x

APPENDIX		TABULATION OF RESULTS OF PRELIMINARY STUDIES	133
APPENDIX	III	TABULATION OF RESULTS OF DETAILED STUDIES	155
APPENDIX	IV	TABULATION OF RESULTS OF DEPTH OF SLUDGE AND SLUDGE ACCUMULATION RATES	171
APPENDIX	v	PHOTOGRAPHS	173

.

LIST OF FIGURES

CHAPTER 1

FIGURE 1.1	-	URBAN SANITATION IN DEVELOPING COUNTRIES	2
FIGURE 1.2	-	THE MAIN FEATURES OF A SEPTIC TANK	7
FIGURE 1.3	-	HEIGHT OF THE PARTICLE ABOVE INVERT	7
FIGURE 1.4	-	THE MICROBIAL ECOLOGY OF THE ANAEROBIC DIGESTION PROCESS	9
FIGURE 1.5	-	CHANGE IN ORGANIC MATTER DURING BIOLOGICAL OXIDATION OF POLLUTED WATERS UNDER AEROBIC CONDITIONS	16
FIGURE 1.6	-	VARIATION OF BOD WITH TIME	16
CHAPTER 2			
FIGURE 2.1	-	EXAMPLE OF POOR COMPARTMENTATION	36
FIGURE 2.2	-	TYPICAL EXAMPLE OF POORLY PLACED INLETS AND OUTLETS, (a)	36
	-	TYPICAL EXAMPLE OF POORLY PLACED INLETS AND OUTLETS, (b)	37
FIGURE 2.3	-	POOR INLET AND OUTLET DESIGN	37
FIGURE 2.4		TANK WITH INLET TOO DEEP	38
FIGURE 2.5	-	SIMPLE INLET TO A SEPTIC TANK	38
FIGURE 2.6		TWIN INLETS FOR TANKS IN EXCESS OF 1200mm WIDE	39
FIGURE 2.7	-	A SCHEMATIC DIAGRAM OF AN UPFLOW ANAEROBIC FILTER	44
FIGURE 2.8	-7 00	UPFLOW ANAEROBIC FILTER (RAMAN AND CHAKLADAR'S DESIGN-TYPE 1)	48

	FIGURE	2.9	-	DOWN AND UFFLOW FILTER (RAMAN & CHAKLADAR'S DESIGN-TYPE 2)	48
	FIGURE	2.10	-	SEPTIC TANK ANAEROBIC FILTER (POLPRASERT & HOANG'S DESIGN)	50
	FIGURE	2.11	-	WRAP-AROUND FILTER (GREEN'S DESIGN)	51
CH	APTER 3				
	FIGURE	3.1	-	DETAILED PLAN OF TANK NO. 1 & 2 AT RATMALANA	58
	FIGURE	3.2	-	DETAILED PLAN OF TANK NO. 3 AT RATMALANA	59
	FIGURE	3.3	-	DETAILED FLAN OF TANK NO. 4 AT RATMALANA	60
	FIGURE	3.4	-	DETAILED PLAN OF TANK NO. 5 AT DEHIWELA	62
	FIGURE	3.5	-	DETAILED SECTIONAL PLAN OF UPFLOW FILTER	63
	FIGURE	3.6	-	DETAILS OF SLUDGE MEASURING DEVICE (ELECTRIC METHOD)	67
СН	APTER 4				
	FIGURE	4.1	-	HOURLY VARIATION OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT I OF TANK NO. 1	78
	FIGURE	4.2	-	HOURLY VARIATION OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT II OF TANK NO. 1	79
	FIGURE	4.3	-	HOURLY VARIATION OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT I OF TANK NO. 2	80
	FIGURE	4.4	-	HOURLY VARIATION OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT II OF TANK NO. 2	81

FIGURE	4.5	-	HOURLY VARIATION OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT I OF TANK NO. 3	82
FIGURE	4.6	-	HOURLY VARIATION OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT II OF TANK NO. 3	83
FIGURE	4.7	-	HOURLY VARIATION OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT I OF TANK NO. 5	84
FIGURE	4.8	-	HOURLY VARIATION OF COLIFORM COUNT IN TANK NO. 1	85
FIGURE	4.9	-	HOURLY VARIATION OF COLIFORM COUNT IN TANK NO. 2	86
FIGURE	4.10	-	HOURLY VARIATION OF COLIFORM COUNT IN TANK NO. 3	87
FIGURE	4.11	-	HOURLY VARIATION OF COLIFORM COUNT IN TANK NO. 5	88
FIGURE	4.12	-	RELATIONSHIP BETWEEN TOTAL COLIFORM REMOVAL EFFICIENCY AND ORGANIC LOADING RATE IN TANK NO. 3	90
FIGURE	4.13	-	RELATIONSHIP BETWEEN COD REMOVAL EFICIENCY AND ORGANIC LOADING RATE IN TANK NO.5	91
FIGURE	4.14	-	RELATIONSHIP BETWEEN COD REMOVAL EFFICIENCY AND SOLIDS LOADING RATE IN TANK NO. 5	92
FIGURE	4.15	-	RELATIONSHIP BETWEEN SS REMOVAL EFFICIENCY AND SOLIDS LOADING RATE IN TANK NO. 5	93
FIGURE	4.16	-	RELATIONSHIP BETWEEN COD REMOVAL EFFICIENCY AND RATE OF FLOW IN TANK NO. 5	94
FIGURE	4.17	-	RELATIONSHIP BETWEEN SS REMOVAL EFFICIENCY AND ORGANIC LOADING RATE OF UPFLOW FILTER CONNECTED TO TANK NO. 5	95

FIGURE 4.18	RELATIONSHIP BETWEEN BOD REMOVAL EFFICIENCY AND RATE OF FLOW OF UPFLOW FILTER CONNECTED TO TANK NO. 5	96
FIGURE 4.19	RELATIONSHIP BETWEEN TOTAL COLIFORM REMOVAL EFFICIENCY AND ORGANIC LOADING RATE OF UPFLOW FILTER CONNECTED TO TANK NO. 5	97
FIGURE 4.20	RELATIONSHIP BETWEEN FECAL COLIFORM REMOVAL EFFICIENCY AND SOLIDS LOADING RATE OF UPFLOW FILTER CONNECTED TO TANK NO. 5	98
FIGURE 4.21	RELATIONSHIP BETWEEN TOTAL COLIFORM REMOVAL EFFICIENCY AND RATE OF FLOW IN UPFLOW FILTER CONNECTED TO TANK NO. 5	99
FIGURE 4.22	VARIATION OF DEPTH OF SLUDGE IN TANK NO. 1 & 2	101
FIGURE 4.23	VARIATION OF DEPTH OF SLUDGE IN TANK NO. 3	102
FIGURE 4.24	VARIATION OF DEPTH OF SLUDGE IN TANK NO. 4	103
FIGURE 4.25	VARIATION OF DEPTH OF SLUDGE IN TANK NO. 5	104

xv

ACATELLY OF ADVENTION NAME OF ADVENTION OF ADVENTION OF ADVENTION ADVENTION OF ADVENTION ADVENTION OF ADVENTION ADVENTION OF ADVENTION A

LIST OF TABLES

CHAFTER 2			
TABLE 2.1	-	VARIATION OF SLUDGE AND SCUM ACCUMULATION WITH TIME	24
TABLE 2.2	-	SLUDGE ACCUMULATION RATES RECOMMENDED BY DIFFERENT RESEARCHERS	25
TABLE 2.3	-	EFFECT OF TEMPERATURE ON THE SLUDGE ACCUMULATION RATE	26
TABLE 2.4	-	RECOMMENDED HYDRAULIC RETENTION TIMES FOR SEDIMENTATION ACTION IN SEPTIC TANKS	28
TABLE 2.5	-	PERFORMANCE SUMMARY FOR ANAEROBIC FILTERS TREATING SEPTIC TANK EFFLUENT	52
CHAPTER 3			
TABLE 3.1	-	SALIENT FEATURES OF SEPTIC TANKS	56
TABLE 3.2	-	GENERAL DETAILS OF THE TANKS	57
CHAPTER 4			
TABLE 4.1	-	SUMMARY OF HOURLY VARIATION OF PARAMETERS IN TANK 1,2,3,& 5	106
TABLE 4.2	-	SUMMARY OF DETAILED STUDIES OF TANK 3 & 5	108
TABLE 4.3	-	CAPACITIES OF SEPTIC TANKS NEEDED TO SERVE THE POPULATION SERVED BY TANKS 1 TO 5 DESIGNED ACCORDING TO STANDARD SPECIFICATIONS - (SRI LAN	
		STANDARD - SLS 745, 1986)	

.

TABLE 4.4	-	COMPARISON OF CAPACITIES AND DIMENSIONS OF TANKS DESIGNED ACCORDING TO STANDARD SPECIFICATIONS AND THE EXISTING FACILITIES	118
		Thorner 100	
APPENDIX II			
TABLE 1	-	VARIABILITY OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT I OF TANK NO. 1	133
TABLE 2	-	VARIABILITY OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT II OF TANK NO. 1	134
TABLE 3	-	VARIABILITY OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT I OF TANK NO. 2	135
TABLE 4	-	VARIABILITY OF BOD, COD AND SS PARAMETERS IN COMPARTMENT II OF TANK NO. 2	136
TABLE 5	-	VARIABILITY OF BOD, COD AND SS PARAMETERS IN COMPARTMENT I OF TANK NO. 3	137
TABLE 6	-	VARIABILITY OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT II OF TANK NO. 3	138
TABLE 7	-	VARIABILITY OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT I OF TANK NO. 5	139
TABLE 8	-	VARIABILITY OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT II OF TANK NO. 5	140
TABLE 9	-	HOURLY VARIATION OF BOD, COD, AND SS PARAMETERS IN TANK NO. 1	141
TABLE 10	-	HOURLY VARIATION OF BOD, COD, SS PARAMETERS IN TANK NO. 2	143
TABLE 11	-	HOURLY VARIATION OF BOD, COD, AND SS PARAMETERS IN COMPART- MENT I OF TANK NO. 3	145

TABLE 12	-	HOURLY VARIATION OF BOD, COD, AND SS PARAMETERS IN COMPARTMENT I OF TANK NO. 5	147
TABLE 13	-	HOURLY VARIATION OF COLIFORM COUNTS IN TANK NO. 1 & 2	148
TABLE 14	-	HOURLY VARIATION OF COLIFORM COUNTS IN TANK NO. 3 AT RATMALANA AND TANK NO. 5	149
TABLE 15	-	VARIATION OF MEAN AND STANDARD DEVIATION VALUES OF BOD PARAMETER WITH DIFFERENT SIX HOUR TIME PERIODS IN TANK NO. 3	150
TABLE 16	-	VARIATION OF MEAN AND STANDARD DEVIATION VALUES OF COD PARAMETER WITH DIFFERENT SIX HOUR TIME PERIODS IN TANK NO. 3	151
TABLE 17	- '	VARIATION OF MEAN AND STANDARD DEVIATION VALUES OF SS PARAMETER WITH DIFFERENT SIX HOUR TIME PERIODS IN TANK NO. 3	152
TABLE 18	-	VARIATION OF MEAN AND STANDARD DEVIATION VALUES OF BOD PARAMETER WITH DIFFERENT SIX HOUR TIME PERIODS IN TANK NO. 5	152
TABLE 19	-	VARIATION OF MEAN AND STANDARD DEVIATION VALUES OF COD PARAMETER WITH DIFFERENT SIX HOUR. TIME PERIODS IN TANK NO. 5	154
TABLE 20	-	VARIATION OF MEAN AND STANDARD DEVIATION VALUES OF SS PARAMETER WITH DIFFERENT SIX HOUR TIME PERIODS IN TANK NO. 5	155
APPENDIX III			
TABLE 1	-	RESULTS OF COD AND SS TESTS CARRIED OUT FOR SAMPLES COLLECTED FROM TANK NO. 3	156
TABLE 2	-	RESULTS OF BOD TESTS CARRIED OUT FOR SAMPLES COLLECTED FROM TANK NO. 3	157

TABLE	3	-	RESULTS OF COLIFORM TESTS CARRIED OUT FOR SAMPLES COLLECTED FROM TANK NO. 3	158
TABLE	4	-	RESULTS OF COD AND SS TESTS CARRIED OUT FOR SAMPLES COLLECTED FROM TANK NO. 5	159
TABLE	5	-	RESULTS OF BOD TESTS CARRIED OUT FOR SAMPLES COLLECTED FROM TANK NO. 5	160
T'ABLE	6	-	RESULTS OF COLIFORM TEST CARRIED OUT FOR SAMPLES COLLECTED FROM TANK NO. 5	161
TABLE	7	-	VARIATION OF COD AND SS REMOVAL EFFICIENCIES WITH LOADING RATE IN TANK NO. 3	162
TABLE	8	-	VARIATION OF BOD REMOVAL EFFICIENCY WITH LOADING RATE IN TANK NO. 3	163
TABLE	9	-	VARIATION OF REMOVAL EFFICIENCIES OF TOTAL AND FECAL COLIFORM WITH LOADING RATE IN TANK NO. 3	164
TABLE	10	-	VARIATION OF COD AND SS REMOVAL EFFICIENCIES WITH LOADING RATE IN TANK NO. 5	165
TABLE	11		VARIATION OF COD AND SS REMOVAL EFFICIENCIES WITH RATE OF FLOW AND RETENTION TIME IN TANK NO. 5	166
TABLE	12	-	VARIATION OF BOD REMOVAL EFFICIENCY WITH LOADING RATE IN TANK NO. 5	167
TABLE	13	-	VARIATION OF BOD REMOVAL EFFICIENCY WITH RATE OF FLOW AND RETENTION TIME IN TANK NO. 5	168
TABLE	14	-	VARIATION OF REMOVAL EFFICIENCY OF TOTAL AND FECAL COLIFORM WITH LOADING RATE IN TANK NO. 5	169

TABLE 15	VARIATION OF	REMOVAL EFFICIENCIES	170
	OF TOTAL AND	FECAL COLIFORM WITH	
	LOADING RATE	IN TANK NO. 5	

APPENDIX IV

•

ТАВЬЕ 1	-	VARIATION OF DEPTH OF SLUDGE (IN METERS)	171
TABLE 2	-	SLUDGE ACCUMULATION RATES	172

Output Methods Date Provident poor Them

NOTATIONS

BOD	-	Biochemical Oxygen Demand (5 days)
°C	-	Centigrade
COD	-	Chemical Oxygen Demand
d	-	Days
DO	-	Dissolved Oxygen
ft	-	Feet
g	-	Grams
G.I.	-	Galvanized Iron
h	-	Hours
in	-	Inches
Kg	-	Kilogram
Kg COD∕m ³ d	- 1	Kilogram of Chemical Oxygen Demand per Cubic Meter Per Day
kg/l	-	Kilogram per Liter
kgSS/m ³ d	-	Kilogram of Suspended Solids per Cubic Meter per Day
l/pa	-	Liters per Person per Annum
l/pd	-	Liters per Person per Day
m	-	Meters
m ²	-	Square Meters
m2	-	Cubic Meters
mg/l	-	Milligram per Liter
ml	-	Milliliters
m ³ /pa	-	Cubic Meters per Person per Annum
m ³ /pd	-	Cubic Meters per Person per Day
MPN	-	Most Probable Number
р	-	No. of Users

PVC	-	Poly Vinly Choloride
r	-	Coefficient of Correlation
SS	-	Suspended Solids
TWL	-	Top Water Level
W	-	Width of Septic Tank

population corested with severa seconds to only 64 and repulation corested with severa seconds to only 64 and rest downails splice are rare and by spen frains since

In los concerns reaction in the most consist when of providing wetter control antitation there from an be more in the second