DEE 02/01A

Ĺ

LB/Dorilo2/1991.

STABILITY OF NATURAL SLOPES

.57

by

N.LOGANATHAN B.Sc. (Eng.) Hons. University of Perademiya. Sri Lanka.

LIBRARY UNIVERSITY OF MORATHWA, SRI LAMKA

A thesis submitted to the University of Moratuwa, Sri Lanka, for the degree of Master of Philosophy.

55246

um Thesis Coll.

August, 1990

University of Moratuwa 55246

62 "do" Gz (0.43)

55246

Т

This thesis has not been previously presented in whole or part, to any University or Institution for a higher degree.

Aleganathe N. Loganathan

August, 1990

The second second

ACKNOWLEDGMENTS

At first, I would like to thank University of Moratuwa for enabling me to undertake this program of study leading to degree M.Phil and also to my employer, Director General, National Building Research Organization (NBRO) for allowing me to make use of some valuable data collected in Landslide Research Project.

I wish to express my indebtedness and deepest gratitude to Dr.D.K de S.Mampitiyarachchi for the guidance, encouragement and help given during the entire program, as a co-supervisor from University of Moratuwa. I wish to extend my sincere thanks to Dr.Suraj de Silva, program co-supervisor from NBRO, for his tremendous encouragement and advices.

I am grateful to Professors A.Thurairajah and B.L.Tennekoon for assistance and encouragement given in various stages of this program.

I wish to acknowledge the following for their assistance and encouragements.

Dr. R.C.Kumarasuriar, UN National Consultant, NBRO, for the valuable guidance in statistical analysis part of the program.

Mr. K.S.Senanayaka, Head, GED-NBRO, for providing necessary advises in administrative procedures.

Mr.P,M.Sithamparapillai, Chief Technical Advisor, NBRO Dr.T.Sivapatham, UN National Consultant, NBRO

Mr.A.Raviskanthan, Head, Computer Division, NBRO, for the assistance given for the computer application part of the program.

Dr.J.J.P.Amaratunghe, Senior Scientist,NBRO, for the encouragement at the initial stage of this program.

Mr. S.Nanthakumar, Marga Institute, for the assistance given in statistical & probability analysis.

Mr.T.Ragulan, for providing computer facilities in the final preparation of this thesis.

Mr. A.T. Fernando for the help given in the final preparation of the thesis. Finally, I would be failing in my duty if I do not thank my colleagues who contributed in numerous ways in successful completion of this program.

N.Loganathan

ABSTRACT

Most of the slopes in Sri Lanka are composed of residual formations derived as a result of in-situ weathering of parent rocks which are predominantly of metamorphic origin. Due to the heterogeneous and anisotropic nature of this slope forming material, a lot of uncertainties exists with regard to the suitability in popular standard methods in assessing degree of stability of such slopes.

The present study proposes two models in order to overcome these uncertainties. One model is the semiempirical approach which is essentially based on statistical and probability techniques. This can be used for a quick assessment of a slope using some simple parameters which can be easily recognized in the field. The other model proposes an analytical approach to choose realistic strength parameters of slope forming materials to be used in the already available stability analysis techniques.

On application, the semi-empirical approach would be able to recognize and identify the potential of instability of a particular slope while the other approach provides an opportunity to carry out a detailed geotechnical investigation to determine the degree of instability of a slope.

For slopes that are found unstable, remedial measures have been proposed with a view to increase their degree of stability.

IV

LIST OF FIGURES

Fig. 2.1- Geology of Sri Lanka.

CHAPTER 2

Fig. 2.2- Residual soil classification system with the weathering profile. Fig. 2.3- Tracks of cyclones and storms, 1901-1978. Fig. 2.4- Weather data from monthly summary - 1984. Fig. 2.5- Weather data from monthly summary - 1985. Fig. 2.6- Weather data from monthly summary - 1986. Fig. 2.7- Forces acting on a slice. Fig. 2.8- Janbu's correction factor chart. CHAPTER 3 Fig. 3.1(a)- Probability distribution ER(1) for all 64 sites in ascending order. Fig. 3.1(b)- Probability frequency against the probability interval 0.0001 for ER(1). Fig. 3.2- Probability distribution of ER(T) for 64 sites in ascending order. Fig. 3.3- Probability distribution of ER(D) for 64 sites in ascending ...der. Fig. 3.4- Probability distribution of ER(L) for 64 sites in ascending order. Fig. 3.5- Probability distribution of ER(V) for 64 sites in ascending order. Fig. 3.6- Probability distribution of ER(R) for 64 sites in ascending order. Fig. 3.7- Probability distribution of ER(F) for 64 sites in ascending order. Fig. 3.8- Probability distribution of ER(S) for 64 sites in ascending order. Fig. 3.9- Probability distribution of ER(P) for 64 sites in ascending order. Fig. 3.10-Probability distribution of ER(U) for 64 sites in ascending order. Fig. 3.11-Probability frequency against probability interval for ER(T). Fig. 3.12-Probability frequency against probability interval for ER(D). Fig. 3.13-Probability frequency against probability interval for ER(L).

Fig. 3.14-Probability frequency against probability interval for ER(V).

17

Fig.	3.15-Probability	frequency	against	probabili	ty interval
	for ER(R).				
Fig.	3.16-Probability	frequency	against	probabili	ty interval
	for ER(F).				
Fig.	3.17-Probability	frequency	against	probabili	ty interval
	for ER(S).				
Fig.	3.18-Probability	frequency	against	probabili	ty interval
	for ER(P).				
Fig.	3.19-Probability	frequency	against	probabili	ty interval
	for ER(U).				
Fig.	3.20- Variation o	of mean and	i STD for	each tri	al.
Fig.	3.21- Normalized	frequency	distribu	tion for	ER(1).
Fig.	3.22- Normalized	frequency	distribu	tion for	ER(2).
Fig.	3.23- Normalized	frequency	distribu	ition for	ER(3).
Fig.	3.24- Normalized	frequency	distribu	ition for	ER(4).
Fig.	3.25- Normalized	frequency	distribu	tion for	ER(5).
Fig.	3.26- Normalized	frequency	distribu	tion for	ER(6).
	0.DD (
CHAP	TER 4				
Rí -	4 1 Venietien e	6 Baabaa	6 6 6 . 6	(ПС)	1
rig.	4.1- variation o	I Factor (or sarety	7 (FS) W11	th conesion
	correlation	factors (c & K c)	and Fric	tion angle
D4 -	correlation	Iactors ((φακφ)	•	1
rig.	4.2- Filect of t	ne Global	shear s	trength c	orrelation
	lactor in La	woratory '	st stre	ess paths.	

Fig. 4.3- Vicinity map of Beragala-Haputale stretch on A-16 road.

Fig. 4.4- Countour map of Beragala earthslip.

- Fig. 4.5- A Typical Stress Strain plot of Multi-Stage Consolidated Undrained Triaxial Test (CU).
- Fig. 4.6- A Typical Total and Effective stress paths of Multi-Stage Consolidated Undrained Triaxial Test (CU).
- Fig. 4.7- Subsurface soil profile and the slip surface along the centre line A-A at the slope of Beragala earthslip.
- Fig. 4.8- Variation of Factor of safety (FS) with cohesion correlation factors $(k_c \& k_c^*)$ and Friction angle correlation factors $(k_{\phi} \& k_{\phi}^*)$.
- Fig. 4.9- Variation of Friction angle correlation factors $(k_{\phi} \& k_{\phi}^{\star})$ and Cohesion Correlation factors $(k_{c} \& k_{c}^{\star})$ for the case of FS=1.

Fig. 4.10- Vicinity map of Kahagalla earthslip.

- Fig. 4.11- Countour map of Kahagalla earthslip.
- Fig. 4.12- Subsurface soil profile and the slip surface along the centre line A-A at Kahagalla earhslip.

- Fig. 4.13- Variation of factor of safety (FS) with cohesion correlation factor $(k_c \& k_{c_s}^{\star})$ and friction angle correlation factors $(k_{\phi} \& K_{\phi}^{\star})$.
- Fig. 4.14- Variation of Friction angle correlation factors ($k_{\phi} \& k_{\phi}^{*}$) and Cohesion Correlation factors ($k_{c} \& k_{c}^{*}$) for the case of FS=1.
- Fig. 4.15- Vicinity map of Beckington earthslip Kirklees estate.
- Fig. 4.16- Contour map of Beckington earthslip.
- Fig. 4.17- Subsurface profile along the centre line A-A at Beckington earthslip.
- Fig. 4.18- Variation of factor of safety (FS) with cohesion correlation factor $(k_c \& k_c^*)$ and friction angle correlation factors $(k_{\phi} \& K_{\phi}^*)$.
- Fig. 4.19- Variation of Friction' angle correlation factors ($k_{\phi} \& k_{\phi}^{*}$) and Cohesion Correlation factors ($k_{c} \& k_{c}^{*}$) for the case of FS=1.
- Fig. 4.20- Sensitivity analysis Friction angle. (For different moisture conditions)
- Fig. 4.21- Variation of Cohesion Correlation Factors (k_c) with Friction angle Correlation Factor (k_{ϕ}) for all 3 sites.
- Fig. 4.22- Typical sketches of failure mechanism.

UNAPTER 5

Fig. 5.1- Subsurface profile of upper slope along the centre line B-B.

LIST OF TABLES

CHAPTER 1

```
Table 1.1 - Landslide occurrences since 1947.
```

CHAPTER 2

Table 2.1 - Geological history of Sri Lanka.
Table 2.2 - Residual soil classification system.
Table 2.3 - ISSMFE landslide classification system, 1988.
Table 2.4 - Comparison of safety factors obtained by different methods of slices.

CHAPTER 3

```
Table 3.1 - Frequency distribution of selected causative factors.
Table 3.2 - Weightage of each factor.
Table 3.3 - Probability distribution for each factor.
Table 3.4 - Probability distribution for each trial.
```

CHAPTER 4

```
Table 4.1 - Cohesion correlation and friction angle factors
for all three sites.
```

CHAPTER 5

Table 5.1- Risk Assessment Form.

	a lit. h happened you at the same relative the	
Th esis t	itle	I
Declarat	ion	II
Acknowle	dgment	III
Abstract	The fail of an and the second	TV
List of	Figures	v
List of	Tables	VTTT
Table of	Contents	VIII
		IX
CHAPTER		1
	1. I Impact of londalides	2
	1.1 impact of famosindes	3
	1.2 Scope of the study	
		0
CHAPTER	2 LITERATURE SURVEY	9
		0
	2.1 Geological aspects of landslides in Sri Lanka	9
	2.2 Engineering geological aspects	12
	2.3 Geotechnical aspects	14
	2.4 Residual soil classification and Geotechnical	
	parameters	14
	2.5 Climatic aspects	17
	2.5.1 Introduction	17
	2.5.2 Climate and landslides in Sri Lanka -	
	Case study	19
	2.6 Landuse and Topographical aspect	19
	2.6.1 Introduction	19
	2.6.2 Landuse history associated with	
	landslides in Sri Lanka	24
	2.6.3 Hazard maps	25
	2.7 SeiSimity and microtremors	26
	2.8 Landslide classifications	26
	2 9 Slope stability analysis	28
	2.9 1 Classical methods of slope apalysis	29
	2.9.1 Glassical methods of slope analysis	
	z	30
and the second	2 10 Summer of otudu	36
	2.10 Summary of Study	50
		20
CHAPTER .	3 RELIABILITY APPROACH IN SLOPE STABILITY	38
		20
	3.1 Introduction	50
COLLEGE ST	3.2 Landslide Database	39
	3.2.1 Field data collection	59
	3.2.2 Computer data storage and sorting	40
A province	3.3 Semi-Empirical approach in slope stability	
-	problem	54
	2.2.1 Method of applysic	55

	3.3.2 Methodology used to find the relative	
	weightage of each parameters.	61
	3.3.3 Check for the interrelationship of	
	parameters.	73
	3.4 Result and discussion	80
CHAPTER	4 GEOTECHNICAL INVESTIGATION AND BACK ANALYSIS	86
	4.1 Introduction	86
	4.1.1 Objective	88
	4.1.2 Scope of the work	88
	4.2 Computer software	89
	4.2.1 GEOSOFT	89 .
	4.2.2 STABL.	92
	4.2.3 Selection of suitable software	93
	4.3 Stability analysis	94
	4.3.1 Back analysis concept	95
	4.3.2 Case studies	98
	4.3.2.1 Beragala Earthslip	98
	4.3.2.2 Kahagalla Earthslip	108
	4.3.2.3 Beckington Earthslip	119
	4.3.3 Results and Discussion	128
	4.4 Conclusion	135
CHAPTER	5 UNSTABLE SLOP.5 : Recognition ar " stabilization	107
	5.1 Introduction	137
	5.2 Standard methods adapted in natural slope	
	designs	138
	5.3 Problems in adopting standard methods in	
	residual slopes	139
	5.4 Methodology for stability assessment of	
	Sri Lankan residual soil slopes	140
	5.4.1 Reliability approach	140
	5.4.2 Questionnaire for slope assessment.	141
	5.5 Slope stabilization techniques	145
	5.6 Case study - Stabilization of	
	Beragala Earthslip	146
	5.6.1 Stability analysis - upper(creeping) slope	147
	5.6.2 Remedial measures for stabilization	148
	5.6.3 Results and discussion	151
CHAPTER	6 CONCLUSIONS AND RECOMMENDATIONS	152

X

Appendix I References

156

ANNEXURES

I	Form for field data collection
II	Triaxial test procedures
III	Data input format of STABL computer software
IV	Borelogs
V	Laboratory testing summary

i