SOME FACTORS INFLUENCING THE ENGINEERING PROPERTIES

OF

HAWKESBURY SANDSTONE

පුත්තකාලය වේංරටුව විශ්ව විදනාලය, සු ලංකාව වෛරටුව, by

LB/2011/15/1991

55354

DON KANAKACHANDRA DE SILVA MAMPITIYARACHCHI,

B.Sc. (Eng) Hons, Sri Lanka

A thesis submitted to the University of New South Wales for the degree of Doctor of Philosophy

1 691 7 82 691.217

FU 41

55354

November, 1982.

55354

This thesis has not been previously presented in whole or part, to any University or Institution for a higher degree.

Jaro hhm. fiti am

D. K. De S. MAMPITIYARACHCHI November, 1982. Dedicated to -

MY PARENTS

ABSTRACT

i

The Hawkesbury Sandstone is a major rock unit within the Permian-Triassic sediments which form the Sydney Basin, Australia. It covers an area of about 12,5000 square kilometers and has a thickness of about 300 meters. As a result of its widespread occurrence in the region, particularly in the metropolitan area, it is of considerable importance to both the civil engineer and the geologist. This thesis examines the factors causing variations in the engineering properties of Hawkesbury Sandstone. An investigation has also been included to determine the suitability of crushed sandstone as a concrete and road aggregate.

The determination of the mechanical properties of fresh Hawkesbury Sandstone was carried out in the laboratory on small specimens of intact rock, free from obvious macroscopic discontinuities, sampled at different locations in accordance with the standard test procedures. A number of sandstone exposures, in the form of quarries and roadside cuttings, were examined to understand the natural processes of weathering occurring in the field. Samples of weathered rock, representing all stages of weathering, were also tested in the laboratory to determine the effects of weathering on the properties of this sandstone. Thin section studies were made on all fresh and weathered samples to study the mineralogy and the texture of the rock. The clay fraction of the rock was analysed using X-ray diffraction and differential thermal analysis techniques. Samples of fresh Hawkesbury Sandstone were also collected in the field

to produce crushed aggregates having a nominal particle size of 19 mm. Two trial mixes of concrete were made in the laboratory using crushed sandstone as the coarse aggregate. After curing, the strength and the deformation measurements of concrete were made.

The stress-strain relationship of Hawkesbury Sandstone subject to uniaxial compression exhibits strong non-linearity at low stress levels. The results obtained in the measurement of mechanical properties of sandstone showed wide variations. The analysis of these results based on statistical techniques, revealed that the material characteristics of the rock, such as density, porosity, moisture content, mineralogy and texture, significantly influence the strength properties and the modulus of elasticity of the rock.

The physical processes of weathering appears to be more widespread than the chemical process and cover a number of changes. These changes include opening of discontinuities and formation of new discontinuities in the rock mass; opening of grain boundaries and grain fracturing in the rock material. Alternate wetting and drying was found to be the most significant single process of weathering which contributes largely towards the degradation of the rock. The strength and modulus of elasticity of the weathered rock were appreciably lower than those of fresh rock.

The failure of certain properties of the sandstone aggregate to satisfy the limits set by the currently available specifications has proved it to be an unsatisfactory material in the upper courses of a road-pavement. The

ii

success of its use in the lower courses, mainly in the sub-base, depends on its grading, durability and stability to environmental and traffic variations. The performances of crushed sandstone as a concrete aggregate where much poorer than those of conventional types of aggregates.

ANT PROPERTY OF THE OCTOOR OF THE REAL TRANSPORTED AND THE PARTY OF TH

antiperior ware a star determination of antiperior that we

ACKNOWLEDGEMENTS

I wish to acknowledge and to express my appreciation to Professor F.C. Beavis for his continuous encouragement, assistance and advice offered throughout the experimentation and in the presentation of this thesis, as the Project Supervisor.

Grateful acknowledgement is extended to Dr. M.J. Knight who acted as supervisor for some time, Dr. A.K. Bhattacharyya of the School of Mining Engineering for the valuable advice offered in planning the experimental procedure, Dr. C.Y. Chork for the assistance provided in performing regression analysis of the results and Dr. F.I. Roberts for the several discussions and for reading the manuscript.

I wish to thank Mrs. Swarna Perera for the assistance provided in the preparation of Appendices. The help provided by the general and technical staff of the School of Applied Geology is appreciated.

Much of the material used in this project was obtained from a number of quarries. I wish to acknowledge the co-operation given by the management of those quarries in the collection of field samples. The Department of Mines, N.S.W., provided rock cores used in this study. The use of equipment of the School of Mining Engineering during the experimentation is also acknowledged with many thanks.

I am deeply indebted to my employer, University of Moratuwa, Sri Lanka, for granting leave of absence, and to the Australian Government for providing financial assistance

iv

to undertake this thesis. I wish to thank the Australian Development Assistance Bureau for its continuous interest during my period of award.

Finally, I wish to record my great appreciation to my wife, Thilaka, and many others for their continuous support throughout the period of study and the preparation of this thesis.

Dalada de Malanasa and Strange

TABLE OF CONTENTS

		Page
ABSTRACT		i
ACKNOWLEDG	GEMENTS	iv
TABLE OF C	CONTENTS	vi
LIST OF FI	GURES	xiii
LIST OF PI	ATES	xvii
LIST OF TA	ABLES	xix
CHAPTER 1.	INTRODUCTION	1
1.1 SCOPE	COF STUDY	2
1.2 EXPER	RIMENTAL DESIGN AND INTERPRETATION	
OF RE	SULTS	4
1.3 ENGIN	EERING SIGNIFICANCE	5
CHAPTER 2.	GENERAL GEOLOGY OF HAWKESBURY	
	SANDSTONE: REVIEW OF LITERATURE	6
2.1 GEOLC	OGY OF THE SYDNEY BASIN	6
2.1.1	Distribution	6
2.1.2	Structure	8
2.1.3	Stratigraphy	8
2.1.4	Triassic Rocks	10
	2.1.4.1 Narrabeen Group	10
	2.1.4.2 Hawkesbury Sandstone	12
	2.1.4.3 Wiànamatta Group	12
2.2 HAWKE	SBURY SANDSTONE	12
2.2.1	Distribution	14
2.2.2	2 Thickness	14
2.2.3	3 Stratigraphy	16

	•	
V	٦.	1
	-	-

		I	Page
	2.2.4	Primary (Sedimentary) Structures	17
	2.2.5	Secondary (Post-Depositional)	
		Structures	20
	2.2.6	Petrology and Sedimentation	20
	2.2.7	Texture	25
	2.2.8	Classification	25
	2.2.9	Relationship to Older Units	27
	2.2.10	Summary	27
CUAD	כ מיזיד	ENCINEEDING CEOLOGY OF HAWKECDHDY	
CHAP.	IER J.	ENGINEERING GEOLOGI OF HAWKESBURI	20
		SANDSTONE: REVIEW OF LITERATURE	29
3.1	INTRODU	JCTION	29
3.2	PHYSIC	AL PROPERTIES OF HAWKESBURY	
	SANDSTO	DNE	30
3.3	MECHANI	CAL PROPERTIES OF HAWKESBURY	
	SANDST	ONE	32
	3.3.1	Uniaxial Compressive Strength	35
	3.3.2	Indirect Tensile Strength	36
	3.3.3	Point Load Strength	37
	3.3.4	Stress-Strain Behaviour of	
		Hawkesbury Sandstone	37
	3.3.5	Elastic Constants	39
	3.3.6	Fracture of Hawkesbury Sandstone in	
		Uniaxial Compression	41
3.4	WEATHER	RING OF HAWKESBURY SANDSTONE	42
3.5	USES OF	HAWKESBURY SANDSTONE	42
3.6	PERFORM	AANCE OF HAWKESBURY SANDSTONE	
	AS A FO	DUNDATION ROCK	44

		Page
3.7 GEOLOG	GICAL FEATURES ASSOCIATED WITH	
HAWKES	SBURY SANDSTONE CAUSING ENGINEERING	
PROBLI	EMS	45
	MECHANICAL DRODEDMIEC OF	
CHAPIER 4.	HAWKEEDUDY CANDEMONE	
	HAWKESBURI SANDSTONE	49
4.1 INTRO	DUCTION	49
4.2 FACTO	ORS INFLUENCING THE BEHAVIOUR OF ROCK	50
4.2.1	l Physical Properties	50
4.2.2	2 Petrology and Texture	55
4.2.3	3 Environmental Conditions	57
4.2.4	A Specimen Geometry	64
	4.2.4.1 Effect of Specimen Diameter	64
	4.2.4.2 Effect of Length-to-	
	Diameter Radio (L/D)	69
4.2.5	5 Testing Conditions	73
	4.2.5.1 Rate of Loading	73
	4.2.5.2 Characteristics of Testing	
	Machine	74
4.3 EXPEN	RIMENTAL PROCEDURE	75
4.3.3	l Sampling and Specimen Preparation	76
4.3.2	2 Determination of Physical	
	Properties	77
	4.3.2.1 Density and Porosity	77
	4.3.2.2 Absorption	. 78
4.3.3	3 Petrological Properties	78
4.3.4	4 Textural Parameters	82

viii

			Dago
	4.3.5.	Measurement of Strength Properties	84
4.4	DISCUSS	SION OF RESULTS	85
	4.4.1	Stress-Strain Behaviour of	
		Hawkesbury Sandstone in Uniaxial	
		Compression	88
	4.4.2	Failure of Hawkesbury Sandstone in	
		Uniaxial Compression	92
	4.4.3	Variation in Engineering Properties	
		of Hawkesbury Sandstone	94
		4.4.3.1 Effect of Physical Properties	99
		4.4.3.2 Effect of Petrological	
		Properties	106
		4.4.3.3. Effect of Textural Parameters	119
		4.4.3.4. Effect of Moisture	124
	4.4.4	Point Load Strength against Uniaxial	
		Compressive Strength	133
	4.4.5	Relationships between Other Properties	135
	4.4.6	Engineering Classification of	
		Hawkesbury Sandstone based on	198
		Modular Ratio	139
	4.4.7	Regression Models for Engineering	
		Properties of HSS	140
СНАР	TER 5.	WEATHERING PROCESSES AND PRODUCTS OF	
		HAWKESBURY SANDSTONE	143
5.1	INTRODU	JCTION	143
5.2	WEATHER	RING PROCESSES	144
5.3	WEATHER	RING OF SANDSTONE	148

ix

			Page
5.4	ENGINEE	RING CLASSIFICATION OF WEATHERED ROCK	151
5.5	RATE OF	WEATHERING	155
5.6	EXPERIM	ENTAL PROCEDURE	159
	5.6.1	Field Inspection	159
	5.6.2	Laboratory Investigation	160
5.7	DISCUSS	ION OF RESULTS	161
	5.7.1	Field Studies	161
	5.7.2	Thin Section Studies	171
	5.7.3	X-Ray Diffraction Studies	181
	5.7.4	Effect of Weathering on Properties	
		of Hawkesbury Sandstone	182
•		5.7.4.1. Physical Properties	184
		5.7.4.2 Absorption Characteristics	
		of HSS	185
		5.7.4.3. Slake Durability Test Results	188
		5.7.4.4. Mechanical Properties	190
	5.7.5	Properties of soil derived from HSS	196
	5.7.6	Processes and Mechanisms of Weathering	
		of Hawkesbury Sandstone	198
	5.7.7	Weathering Classification of	
		Hawkesbury Sandstone	200
CHAP	TER 6.	ENGINEERING USES OF HAWKESBURY	
		SANDSTONE	208
6.1	INTRODU	CTION	208
6.2	AS A CO	NCRETE AGGREGATE	209
	6.2.1	Influence of Properties of Aggregate	210
	622	Water/Cement Ratio	213

x

			Page
	6.2.3	Aggregate/Cement Bond	214
	6.2.4	Specimen Geometry and Testing	
		Conditions	214
6.3	AS A RO	AD AGGREGATE	215
6.4	AS A RI	P-RAP MATERIAL	218
6.5	EXPERIM	ENTAL PROCEDURE	218
	6.5.1	Aggregate Testing	219
	6.5.2	Concrete Testing	220
6 6	DISCUSS	ION OF DECILITE	222
0.0	DISCOSS	ION OF RESULTS	222
	6.6.1	As a Concrete Aggregate	225
	6.6.2	As a Road Aggregate	234
	6.6.3	As a Rip-Rap Material	236
СНАРТ	ER 7: C	ONCLUSIONS	237
7.1	MECHANI	CAL PROPERTIES OF HAWKESBURY SANDSTONE	237
7.2	WEATHER	ING OF HAWKESBURY SANDSTONE	239
7.3	ENGINEE	RING USES OF HAWKESBURY SANDSTONE	242
REFER	ENCES		244
APPEN	DICES:		261
1.	NOTATIO	N	262
2.	BRIEF D	ESCRIPTION OF SAMPLES USED IN	
	UNIAXIA	L TESTING	265
3.	DEFINIT	ION OF TERMS	268
4	DREDARA	TION OF THIN SECTIONS	271

xi

	(a)	Frequency distribution histograms and	Page
	(4)	litie and and and and	
		cumulative frequency curves for grain	
		size and grain shape.	273
5.	PRE	PARATION OF XRD AND DTA SPECIMENS	295
	(a)	XRD traces for fresh rock.	297
	(b)	XRD traces for weathered rock.	301
	(c)	DTA curves for fresh rock.	308
5.	MEA	SUREMENT OF ROCK PROPERTIES -	
	LAB	ORATORY TEST PROCEDURES	309
	(a)	Stress-strain curves for specimens	
		subject ot uniaxial compression	314
	(b)	Load-deformation curves for specimens	
		subject to uniaxial compression.	337
7	DEC	ULTS OF THE INVESTIGATION	365
· •	TCD D		
8.	RES	ULTS OF THE STATISTICAL ANALYSIS	374
9.	PRE	PARATION AND TESTING OF CONCRETE SPECIMENS	390
	(a)	Load/Deformation measurement for concrete	
		cylinders subject to uniaxial compression	394

xii

xiii

LIST OF FIGURES

		Page
2.1	Geology of the Sydney Basin	7
2.2	Thickness fence diagram of Hawkesbury	
	Sandstone	15
2.3	Vector analysis map	18
3.1	Initial water absorption curves	
	for Hawkesbury Sandstone	32
3.2	Uniaxial Compressive Strength	
	variation of Hawkesbury Sandstone	36
3.3	Axial stress-axial strain curve,	
	with loading and reloading loops	38
3.4	Stress-strain curves for Hawkesbury	
	Sandstone	38
3.5	Summary of Strength and Modulus data	
	for Hawkesbury Sandstone	40
4.1	Approximate relationship between	
	Strength and Bulk Density	54
4.2	Variation of Strength with Porosity	54
4.3	Graph showing relation between tensile	
	strength and matrix percentage	56
4.4	Relationship between uniaxial strength	
	and moisture content for quartzitic	
	sandstones	58
4.5	Relation between tensile strength	
	and relative humidity	60
4.6	Point Load strength as a function of	
	water content in rock cores	61

		Page
4.7	Relationship between point load strength	
	and degree of weathering	63
4.8	Effect of specimen diameter on the	
	strength of sandstone and concrete	66
4.9	Apparent Brazilian tensile strength	
	as a function of disc diameter	68
4.10	Size effect in the diametral point-load	
	test	69
4.11	Influence of length/diameter ratio on	
	uniaxial compressive strength	70
4.12	Effect of thickness on the tensile	
	strength of sandstone	72
4.13	Point load strength versus L/D ratio	72
4.14	Ninety-five percent confidence limits	
	for mineral proportions	80
4.15	Theoretical stress distribution of a	
	specimen subject to uniaxial compression	91
4.16	Variation of dry density with porosity	
	for Hawkesbury Sandstone	10.0
4.17	Variation of uniaxial compressive strength	
	with dry density for Hawkesbury Sandstone	100
4.18	Variation of tensile strength with dry	
	density for Haweksbury Sandstone	102
4.19	Variation of uniaxial compressive strength	
	with porosity for Hawkesbury Sandstone	102
4.20	Variation of tensile strength with	
	porosity for Hawkesbury Sandstone	104

xīv

		Page
4.21	Variation of uniaxial compressive strength	
	with grain size for Hawkesbury Sandstone	104
4.22	Variation of uniaxial compressive strength	
	with packing proximity for Hawkesbury	
	Sandstone	120
4.23	Variation of tensile strength with grain	
	size for Hawkesbury Sandstone	120
4.24	Rate of absorption of water for	
	Hawkesbury Sandstone	125
4.25	Variation of uniaxial compressive strength	
	with moisture for Hawkesbury Sandstone	127
4.26	Variation of tensile strength with moisture	
	for Hawkesbury Sandstone	128
4.27	Variation of Poisson's ratio with moisture	
	for Hawkesbury Sandstone	128
4.28	Variation of modulus with moisture for	
	Hawkesbury Sandstone	130
4.29	Variation of uniaxial compressive strength	
	with point load strength index for	
	Hawkesbury Sandstone	134
4.30	Summary of strength and modulus data for	
	Hawkesbury Sandstone	139
5.1	Weathering profile and diagnostic features	
	of the exposure shown in Plate 5.2	163
5.2	Weathering profile and diagnostic features	
	of the exposure shown in Plate 5.3	164
5.3	Weathering profile and diagnostic features	
	of the exposure shown in Plate 5.4	166

xv

		Page
5.4	Rate of absorption curves for weathered	
	sandstone	186
5.5	Variation of uniaxial compressive strength	
	with degree of weathering for Hawkesbury	
	Sandstone	191
5.6	Variation of Tangent Modulus with degree	
	of weathering for Hawkesbury Sandstone	192
5.7	Variation of Secand Modulus with degree	
	of weathering for Hawkesbury Sandstone	193.
5.8	Particle size distribution of soil	197
5.9	Variation of Slake Durability Index/Dry	
	Density with degree of weathering	
6.1	Strength versus water/cement ratio	213
6.2	Drying shrinkage of concrete	229
6.3	Total deformation of concrete	231
6.4	Drying strain of concrete	232
6.5	Creep deformation of concrete	232

restone quitty at destore

and make and access the destroyed your ter

.

xvi

LIST OF PLATES

2.1	An intensely fractured zone in Hawkesbury	Page
	Sandstone.	21
3.1	Sandstone building - St. Mary's Cathedral,	
	Sydney.	43
3.2	Road cutting in Hawkesbury Sandstone	43
3.3	A gap formed by decomposed dyke in	
	Hawkesbury Sandstone	46
3.4	A recent rock fall in Hawkesbury Sandstone	
	on the Newcastle Expressway	46
3.5	A sliding rock mass in Hawkesbury Sandstone	48
4.1	Cataclasis failure of Hawkesbury Sandstone	
	in uniaxial compression	93
4.2	Shear failure of Hawkesbury Sandstone in	
	uniaxial compression	93
4.3	Sample CM-3 - fresh Hawkesbury Sandstone	108
4.4	Sample CM-4 - fresh Hawkesbury Sandstone	109
4.5	Sample WE - fresh Hawkesbury Sandstone	110
4.6	Sample WO-1 - fresh Hawkesbury Sandstone	111
5.1	Sandstone quarry at Gosford	162
5.2	Weathered sandstone at Gosford quarry	163
5.3	Rock exposure at Sydney quarry	164
5.4	Rock exposure at Heathcote roadside	
	cutting	166
5.5	Soil profile at Berowra road cutting	168

xviii

		Page
5.6	Salt weathering of Hawkesbury Sandstone	170
5.7	Gosford sample - fresh Hawkesbury Sandstone	172
5.8	(a) and (b). Gosford sample - slightly	
	weathered Hawkesbury Sandstone	173
5.9	(a) and (b). Gosford sample - moderately	
	weathered Hawkesbury Sandstone	174
5.10	(a) and (b). Cosford sample - highly	
	weathered Hawkesbury Sandstone	175
5 1 1	Heathacta cample - fresh Haukeshuru	
5.11	Sandstone	176
	Danuscone	1/0
5.12	(a) and (b). Heathcote sample - slightly	
	weathered Hawkesbury Sandstone	177
5.13	(a) and (b). Heathcote sample - moderately	
	weathered Hawkesbury Sandstone	178
5.14	(a) and (b). Heathcote sample - highly	
	weathered Hawkesbury Sandstone	179
A6.1	Strain measurement using electrical	
	resistance strain gauges in uniaxial	
	compression tests	310
A6.2	PC-1M Compressometer arrangement in uniaxial	
	compression test.	310
A6.3	Point load test, apparatus	313
A9.1	Compressometer/Extensometer arrangement to	
	measure deformation in concrete specimens	391
A9.2	Creep testing rig containing two specimens	391
A9.3	Length comparator to measure the	
	shrinkage of concrete beam specimens.	393

LIST (OF	TABLES
--------	----	--------

		Page
2.1	Permin-Triassic sequence of the	
	Sydney Basin	9
2.2	Rock units of the Narrabeen Group showing	
	lithological correlation	11
2.3	Stratigraphic succession of Wianamatta	
	Group	13
2.4	Composition of Hawkesbury Sandstone	22
2.5	Composition of heavy minerals in	
	Hawkesbury Sandstone	24
2.6	Classification of sandstone	26
3.1	Variation of bulk density and porosity	
	of Hawkesbury Sandstone	31
3.2	Engineering properties of Hawkesbury	
	Sandstone	34
4.1	Factors influencing the behaviour of rock	51
4.2	Strength variations of Hawkesbury Sandstone	63
4.4	UCS measurement on GSF quarry sample	86
4.5	Properties of Hawkesbury Sandstone	95
4.6	Variation of petrography and texture of	
	Hawkesbury Sandstone	112
5.1	A simple summary of weathering processes	145
5.2	Engineering classification of weathered	
	rock for Sydney region	153
5.3	Diagnostic features of the weathering	
	classification proposed by McMahon et.al(1975)	154
5.4	Properties of weathered Hawkesbury Sandstone	183

X	X

		Page
5.5	Slake durability test results	189
5.6	Atterberg limits	196
5.7	Diagnostic features of the proposed	
	weathering classification for	
	Hawkesbury Sandstone	202
5.8	Proposed weathering classification for	
	Hawkesbury Sandstone	
6.1	Qualities of Roadstone aggregate	217
6.2	Proportion of Mixes	221
6.3	Properties of aggregate	223
6.4	Grading of coarse aggregate	224
6.5	Grading of fine aggregate	224
6.6	Properties of concrete	226
6.7	Properties of concrete	217
A7.1	Properties of Hawkesbury Sandstone	366
A7.2a	Variation of engineering properties of	
	HSS with moisture content - GSF sample	368
A7.2b	Variation of engineering properties of	
	HSS with moisture content - AR sample	369
A7.3	Properties of weathered HSS	370
A7.4	Absorption properties of HSS	372
A7.5	Slake durability test results for fresh HSS	373
A8.1	Comparison of Means using 't' test	374
A8.2	ANOVA for UCS measurement of GSF Quarry	
	Sample	374
A8.3	ANOVA for Porosity of HSS	375
A8.4	ANOVA for Dry Density of HSS	376
78 5	ANOVA for Quartz content of HSS	377

x	x	i
-	42	-

			Page
A8.6	ANOVA for	Cement Content of HSS	378
A8.7	ANOVA for	Matrix Content of HSS	379
A8.8	ANOVA for	Grain Size of HSS	380
A8.9	ANOVA for	Grain Shape of HSS	381
A8.10	ANOVA for	Packing Proximity of HSS	382
A8.lla	ANOVA for	Moisture Content of sample GSF	383
A8.11b	ANOVA for	moisture Content of sample AR	384
A8.12	ANOVA for	Degree of Weathering (d/w) of HSS	385
A8.13	ANOVA for	Absorption of HSS	386
A8.14	ANOVA for	Slake Durability Index (I _d)	
	of HSS		387
A8.15	Relations	hip between Point Load Index	
	(I _{s(50)})	and UCS of HSS	388
A8.16	Comparison	n of Means - Porosity	389
A8.17	Compariso	n of Means - UCS	390

this tublidation and also from similar and iss conductor