ෙරුණුව විශ්ව විදහැලදෑ ලිල්ක්ට වොණුව විශ්ව විදහැලදෑ ලිල්ක්ට

A MATHEMATICAL MODEL STUDY TO

FORECAST INFLOW TO

SENANAYAKE SAMUDRA

Ву

MISS. P.P.G. DIAS B.Sc.(Eng.), C. Eng., M.I.E. (Sri Lanka)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

A Dissertation submitted in partial fulfilment of the Requirements for the Degree of Master of Engineering.

55557

Department of Civil Engineering, Faculty of Engineering, University of Moratuwa.

 $\mathcal{Z}_{\mathcal{F}}$

September 1987

a.e- 954 87.

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to all those who assisted me in completing this project with much success. Particular mention has essentially to be made on

- * Staff of the University of Moratuwa, the Vice Chancellor, the Dean of the faculty of Engineering, the head of the Civil Engineering Department, course co-ordinator, Dr. C. Kariyawasam who had spent his valuable time on this project.
- * Mr. N. Kumarasamy, Senior Deputy Director of the Irrigation Department.
- * Mr. N. Madusuthanan, Deputy Director, Irrigation Department who granted permission to use the computer in his division for the water balance studies and his staff whose assistance was invaluable in developing the computer program.
- * Executive Engineer, Bibile Highways Department, Superintendent, Adawatte Tea Estate, Agriculture Inspector Agrarian Service Centre Dambagalla and Irrigation Engineer Bibile and his staff for supplying rainfall Data.
- * Staff of the Meteorological Department for helping to collect the rainfall data.
 University of Moratuwa, Sri Lanka.
- * Director of Irrigation, Deputy Directors of Irrigation Department and all other friends who gave their fullest co-operation to complete this report successfully.

University of Moratuwa, Sri Lanka.

This Dissertation has not been previously presented in whole or part, to any University or Institution for a higher degree it. ac. Ik

UOM Verified Signature

September 1987

Miss P.P.G. Dias

TABLE OF CONTENTS

Page

Chapter	1 1.1 1.2 1.2.1 1.2.2 1.2.3	INTRODUCTION General Historical background of the Gal Oya Project Beginning and development of the project Deterioration of the scheme Rehabilitation	2 2 2 2 4 5
Chapter	2 2.1 2.2 2.3 2.4	HYDROLOGY Hydrology of the project area Evaporation Wind speed Temperature	7 7 7 9
Chapter	3	GEOLOGY	10
Chapter	4	NEED FOR A MODEL	11
Chapter	5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.3.1 5.2.3.2 5.2.3.2.1 5.2.3.2.2	DEVELOPMENT OF THE MODEL General Methodology Inflow to the Reservoir Data Generation Inflow Model General Calibration of the Model Libration of the Model Weekly Model Moratuwa, Sri Lanka	12 14 14 15 18 19 21
Chapter	6 6.1 6.2	VRESULTS AND CONCEUSION Monthly Model Weekly Model	23 23 23
		APPENDIXES	26
		REFERENCES	69

*Note: Reference Numbers Cited In Text Are As Given On Page 69

LIST OF APPENDIXES

			Page
Appendix	I	Physical characteristics of the Reservoir	26
Appendix	II	Monthly Evaporation Rates	27
Appendix	III	Computer Program for the monthly Model.	28
Appendix	IV	The water balance study for the calculation	35
		of the inflow to the reservoir	
Appendix	V	Collected Data	38
Appendix	VI	Correlation coefficient & Regression	40
		coefficients for the Regression Model to	
		Generate the missing data	
Appendix	IIV	Corrected Data File	41
Appendix	VIII	Flow chart for the Mathematical Model	43
Appendix	IX	Calculation sheet of the parameter	44
		œefficients	
Appendix	X	Computed parameter coefficients	51
Appendix	XI	The rainfall over the catchment ,Actual	52
		Inflow and Estimated Inflow to the reservoir	
Appendix	XII	Computer program for the Weekly Model	53
Appendix	XIII	Specimen calculation of the water balance	61
		study for the weekly model to calculate	
nandiu	VIX	the Inflow to the Reservoir.	(2)
Appendix Appendix	XA VTA	Specimen of the collected Weekly data.	62
Appendix	XVI	Specimen of the corrected Weekly data. Correlation coefficients and Regression	63 64
uffengry	VAT	coefficients for the Regression Model	04
Appendix	XVI.	Uspecimen of the calculated Parameter	65
простить		Exemple of the carculated rataneter	63
Appendix	XVIII	Computed Parameter coefficients for	66
		Wither weekly model.	00
Appendix	XIX	The weekly Rainfall over the catchment	67
		area, Actual weekly Inflow and Estimated	_,
		weekly Inflow	

LIST OF FIGURES

Fig.1.1	Location Map of the Gal Oya Irrigation Project.
Fig.1.2	Catchment Area of the Senanayake Samudra.
Fig.2.1	The Map Showing Pan Evaporation Station of Sri Lanka.
Fig.5.1	The Thieson Polygon with the rainfall stations in the Catchment.
Fig.6.1	Monthly Hydrograph over the Catchment area.
Fig.6.2	Weekly Hydrograph over the Catchment area.

ABSTRACT

The Objective of this Study is to develop a Mathematical Model to Forecast Inflows to Senanayake Samudra, given the rainfall in its Catchment. This forecast can effectively be used in establishing the reservoir operating criteria. The Model is a self cleansing one, which will modify its basic parameters as new data are fed in.

The Water Balance Equation is used to develop the Model.

Original plan was to collect the rainfall data for the past thirty years of all the rainfall stations within and adjoining the catchment and characteristics of the basin. However the useful rainfall data were available only for the past five years.

Hence the Monthly Model and the Weekly Model were developed with the available data.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk