

RATIONALIZATION OF PRESTRESSED CONCRETE SPINE BEAM DESIGN PHILOSOPHY FOR EXPERT SYSTEMS

by M T R Jayasinghe , Churchill College

A thesis submitted to the University of Cambridge for the Degree of Doctor of Philosophy.

6.8

624.012.46 J 3

Thesis

Engineering Department University of Cambridge Cambridge - 60286 January 1992

Abstract

The most important aim of expert systems is to emulate the expert. The majority of existing expert systems for design try to achieve this by integrating the phases of the design process within one software environment thus achieving an overall automation. These integrated systems tend to support design by numerous repeated analysis due to their inability to suggest good preliminary solutions. The feedback from numerical analyses is needed to modify the preliminary solutions.

It is argued here that human experts have a different approach to design problems. They try to minimise the iterative nature of design by suggesting preliminary solutions which have a higher chance of succeeding at the subsequent detailed design stage. Expert systems should be able to do the same. Ideally, good preliminary solutions should be tailored to the requirements; this means that they should take account of the majority of constraints and structural behaviours quantitatively while selecting the values for key design parameters. It is suggested here that the numerical processing power of the computer should be used to obtain good preliminary solutions by developing design algorithms, which can take account of governing factors at an early stage of the design process. These in turn can be used to encapsulate knowledge in the expert systems instead of the 'heuristics' which are used to incorporate past experience in existing expert systems.

In order to develop these design algorithms, it is necessary to unravel the rationale behind each decision made during the preliminary design stage. In this thesis, the work carried out to rationalize the philosophy of the design process of prestressed concrete spine beams is explained in detail. The main advantage of this approach is that the expert system is compact and fast in execution. It is also capable of guiding the designer in a consultation session either by suggesting appropriate values or allowable ranges for key design parameters, as is done by a human expert.

Keywords: Prestressed Concrete, Spine Beams, Bridges (structures), Expert Systems, Prolog, Deep Knowledge

Acknowledgements

I am most grateful to my supervisor, Dr C. J. Burgoyne, for introducing me to a topic related to expert systems and his interest, perseverance, guidance and friendship.

I have received much technical help from the computer officers of the Engineering Department, and in particular, wish to thank Mr Brian Wootton.

I also wish to thank to my friends in the Structures Group who made my time in Cambridge a memorable one. My gratitude to Ian Brown, Tim Ibell, Cam Middleton and Dr. Alan Kwan for proof reading my thesis.

Last, but not least, I wish to thank my wife, Chintha, for her unfailing support and encouragement.

Financial support from the Cambridge Commonwealth Trust, Lundgren Research Fund and Committee of Vice-Chancellors and Principles (in the form of an ORS award) is gratefully acknowledged, as is the support from SERC who made a grant available (Reference Number GR/F/31601) for purchase of computer hardware and software.

Declaration

This thesis is a report of research work carried out in the Department of Engineering, University of Cambridge, between October 1988 and January 1991. Except where references are made to other work, the content of this thesis is original and includes nothing which is the outcome of work done in collaboration. The work has not been submitted in part or in whole to any other university. This dissertation is 250 pages.

M. T. R. Jayasinghe Engineering Department University of Cambridge

Contents

Ab	ostrac	t		ii
Ac	know	ledgem	ents	iii
De	clara	tion		iii
Co	ntent	s		iv
		Figures		ix
		Tables		xiii
Nc	otatio	n		xiv
1	Intr	oducti	on	1
	1.1	Scope	and aim	3
	1.2	Arranı	gement of the thesis	4
2	Lite	erature	e review of expert systems for design	7
	2.1	Exper	t systems	8
		2.1.1	Difference between conventional computer programs	
			and expert systems	9
		2.1.2	Architecture of an expert system	10
		2.1.3	Expert system development tools	11
	2.2	Some	early expert systems	14
	2.3	Exper	t systems for design	. 15
		2.3.1	Coupled expert systems	. 15
		2.3.2	Expert systems for structural design	. 16
		2.3.3	Discussion of existing expert systems	. 23
	2.4	Philos	sophy of expert systems	. 24
		2.4.1	Suitability of heuristic search for design	. 25
		2.4.2	Models for design	. 28
		2.4.3	Limitations of existing expert systems	. 33
		2.4.4	Explicit knowledge representation for better models of design	. 36

	2.5	Discuss	sion	38
3	Bac	kgroun	d to the proposed design technique	45
	3.1	Prestre	essed concrete bridges	46
		3.1.1	Design of prestressed concrete bridges	47
	3 .2	Curren	t design techniques	47
		3.2.1	Design technique by Abeles & Bardhan-Roy	48
		3.2.2	Design technique by Gilbert & Mickleborough	49
		3.2.3	Design technique by Lin & Burns	50
		3.2.4	Design technique by Naaman	52
		3.2.5	Summary of current design techniques	53
	3.3	Propos	sed revisions of the design techniques	56
		3.3.1	A method for dealing with the reactant moments	60
		3.3.2	Selection of cable force	64
		3.3.3	The effects of transverse load distribution	66
		3.3.4	The governing criteria for preliminary design	68
	3.4	Discus	sion	68
4	Sele	ection	of section dimensions	76
	4.1	Design	criteria for section dimensions - Determinate beams	77
		4.1.1	Minimum thickness required for construction and durability	77
		4.1.2	Provision of sufficient ultimate capacity	78
		4.1.3	Existence of a Magnel diagram	80
		4.1.4	Existence of a sufficient feasible region	81
		4.1.5	Discussion of the design criteria	82
	4.2		nated determination of section dimensions - Statically ninate beams	83
		4.2.1	Section moduli as a function of flange and web areas .	

		4.2.2	Expressions for the existence of a Magnel diagram	85
		4.2.3	Expressions for the existence of sufficient feasible region	85
		4.2.4	Automated Selection of section dimensions	89
		4.2.5	Design example	91
	4.3	Selecti	ion of section dimensions for statically indeterminate	
		beams	• • • • • • • • • • • • • • • • • • • •	94
		4.3.1	Selection of top flange width	95
		4.3.2	Selection of top flange thickness	95
		4.3.3	Selection of the overall depth of the section	98
		4.3.4	Selection of web thickness	98
		4. 3 .5	Selection of the bottom flange width	100
		4.3.6	Selection of the bottom flange thickness	101
	4.4	Rules	used for the expert system	104
	4.5	The d	esign example	106
		4.5.1	Selection of section dimensions for the example	107
		4.5.2	Calculation of bending moments for the design example	e 109
		4.5.3	Design example on selecting bottom flange area	109
	4.6	Discus	ssion	113
_	a 1			
5			of cable forces and profile	
	5.1	_	of the algorithm	
	5.2	Select	ion of the cable forces	. 122
		5.2.1	Cable force governed by the moment range (P_1)	. 123
		5.2.2	Cable force governed by the lever arms (P_2)	. 123
		5.2.3	Cable force governed by the existence of a concordant (I, I, D)	100
			profile (P_3)	
		5.2.4	Cable force governed by P_4	
		5.2.5	Design example	
		5.2.6	Summary on the selection of cable forces	. 134

	5.3	Autom	nated determination of cable profile	134
		5.3.1	Concordant cable profiles with a constant cable force .	136
		5.3.2	Concordant cable profiles with varying cable forces	137
		5.3.3	Location of anchor blocks	138
		5.3.4	The design example	141
		5.3.5	Summary on the automated determination of cable profile	144
	5.4	Conclu	usions	144
6	The	exper	t system PREDEX	156
	6.1	Model	ling of engineering design	157
		6.1.1	Hierarchical decomposition of problem	157
		6.1.2	Non-monotonic reasoning in design	158
		6.1.3	Truth Maintenance Systems	160
	6.2	Black	poard model and systems	161
		6.2.1	Hierarchical representation of the blackboard	163
		6.2.2	Suitability of the blackboard model for PREDEX	163
		6.2.3	Edinburgh Prolog Blackboard Shell	163
	6.3	The e	xpert system	169
		6.3.1	Features of knowledge module for preliminary design (PREDEX)	170
		6.3.2	Explicit representation of design goals	172
		6.3.3	Structure of PREDEX	173
		6.3.4	User interface	181
		6.3.5	Explanation facilities	182
		6.3.6	Knowledge elicitation	184
	6.4	Concl	usions	185
7	Ext	ension	ns to the proposed design techniques	189

vii

	7.1	Applic	ation to semi- or non-prismatic beams	190
		7.1.1	Application to semi-prismatic beams	191
		7.1.2	Application to non-prismatic beams	192
	7.2	Applic	ability of grillage analysis	193
		7.2.1	Application to right bridges	194
		7.2.2	Application to skew bridges	195
	7.3	Effect	of the construction technique and sequence	196
	7.4	The eff	fect of long-term creep	197
	7.5	The eff	fect of the construction sequence on the reactant moments	198
	7.6	The eff	fect of temperature	199
		7.6.1	Calculation of continuity moment due to temperature	
		-	effects	200
		7.6.2	Application of temperature effects to the proposed de- sign technique	200
	7.7	The ef	ffect of foundation settlements	201
	7.8	Effect	of shear lag	201
	7.9	The de	esign example	202
	7.10	Discus	ssion \ldots	204
8	Con	clusio	ns and future work	212
	8.1	Gener	al conclusions	212
	8.2	Sugge	stions for further research and development	216
A	Ref	erence	s	219
в	The	gover	rning equations and their graphical representation	1228
	B.1	Stress	limit criteria	. 228
	B.2	The N	Magnel diagram	. 231

List of Figures

1.1	Possible cross sectional shapes of spine beams. Ordinate: number of boxes. Abscissa: number of webs in each box 6
2.1	Components of an expert system
2.2	An expert system for design of bridges 43
2.3	Design as an iterative feedback process
2.4	A portion of the dependency tree
3.1	Components of the bending moment envelope
3.2	Crack pattern for case 1
3.3	Cable force P_1 on Magnel diagram
3.4	Crack pattern for case 2
3 .5	Total bending moment envelope for an internal span 73
3.6	Lever arms: (a) at supports, (b) at mid span
3.7	Bounds on cable profile
3.8	Crack pattern for case 3
3.9	Crack pattern for case 4
4.1	Force diagram at ultimate state
4.2	Magnel diagram with feasible region outside the eccentricity limits
4.3	Magnel diagram with feasible region when $e_{k_2} \leq e_{max}$ and $e_A \leq e_{max} \ldots \ldots$
4.4	Magnel diagram with feasible region when $e_{k_2} \leq e_{max}$ and
	$e_B \leq e_{max}$
4.5	Magnel diagram with feasible region when $e_{k_2} > e_{max}$, with dominantly sagging moments
4.6	Magnel diagram with feasible region when $e_{k_1} \ge e_{min}$, with dominantly hogging moments

4.7	Details of the notation used to represent the idealised section . 118
4.8	The shape of the second order function of A_b
4.9	Typical cross section of a box girder with possible loads 119
4.10	Top flange thickness and span
4.11	Minimum thickness of the web
4.12	Data for the calculation of the width of the bottom flange 120
4.13	The box girder used as the example: (a) Longitudinal layout,
	(b) Cross sectional layout that is known at the start 120
5.1	Magnel diagram showing the limits on cable forces $(P_1 and P_2)$ 146
5.2	Magnel diagram showing the special case where P_1 and P_2 coincide
5.9	
5.3	The equilibrium system
5.4	The reactant moments at supports
5.5	Magnel diagram on the limits of e_{p-min}
5.6	$P e_{p-min}$ versus P
5.7	(a). The variation of cable forces in the span and support
	regions, (b). The variation of function β_i over an internal
	support, (c). The variation of eccentricity corresponding to
	e_{p-min} and (d). Area covered by the function $\beta_i RP_t e$ over an internal span
5.8	A Magnel diagram showing a case where P_4 governs 149
5.9	(a). The variation of cable forces in the span and support regions, (b). The variation of eccentricity corresponding to
	e_{p-min} with the additional limits imposed by the cover re-
	quired for the prestressing cables, (c). Shaded area showing
	the additional constraint imposed on the function $\int \beta_i R P_t e dx$. 149
5.10	(a). Influence line at $x = 21.0m$. and Corresponding loading. (c). Shape of the bending moment diagram due to the loading 150
5 11	Forces and moments at a point where the cable force changes . 151
0.11	Toros and momento as a point where the cable force changes . 101

į

5.12	Possible shape for the cable profile at a change point to get
	the maximum moment
5.13	Possible shape for the cable profile at a change point to get
	the minimum moment
5.14	The inclination of the resultant cable placed at the limits of
	eccentricity at the section where the new cable is started $(e_s,$
	not e_p , because dealing with angles which are distorted in a
	plot of e_p)
5.15	The special line of thrust zone, which includes the additional
	bounds due to maximum and minimum limits on eccentricity. 153
5.16	Bending moment diagram due to point forces and point moments153
5.17	Bending moment diagram which fits into the modified force-
	eccentricity zone
5.18	Bending moment diagram which fit into force-eccentricity zone 154
5.19	Actual cable profile with boundaries of cable profile zone 155
5.20	Modified force-eccentricity zone when the limits on the mini-
	mum eccentricity of anchor at 1^{st} change point is violated 155
6.1	Coupling an expert system with a Truth Maintenance System 186
6.2	Knowledge modules communicating through the blackboard . 186
6.3	Prolog, C and Fortran interface
6.4	Main goals of the preliminary design process
6.5	Sub-goals for the selection of section dimensions
6.6	Hierarchical structure used for PREDEX
7.1	Longitudinal sections of different bridge types
7.2	Grillage layout for a three span right, prismatic twin-cell con-
	cre spine beam deck. (a) Deck section (b) grillage beams (c)
	grillage section (d) deck longitudinal section (e) grillage mesh. 206
7.3	Grillage layout for a three span skew, prismatic twin-cell con-
	cre spine beam deck

7.4	Trapped moments for span by span construction	207
7.5	Moment diagrams for Kylesku Bridge	20 8
7.6	Modified bending moment diagram to include trapped moments	s208
7.7	Effect of construction sequence on reactant moments	209
7.8	Temperature distribution	210
7.9	Thermal strains for compatibility method and the resulting stresses	210
7.10	Shear lag	210
7.11	Differential temperature distributions and the corresponding stresses	211
B.1	Stresses due to prestress and moment	233
B.2	A typical Magnel diagram	233
B.3	Magnel diagram under working load conditions	234

List of Tables

4.1	The selection of top and bottom flange thicknesses for a stat- ically determinate beam
4.2	The values of α_i and δ_i at the start and the end of the iterative cycle for span/depth of 20
4.3	Required minimum thicknesses of the top flange
4.4	Required web thickness depending on the type of ducts 99
4.5	The design parameters and results for Case 1
4.6	The design parameters and results for Case 2
4.7	The design parameters and results for Case 3, Step 2 111
4.8	The design parameters and results for Case 4, Step 1 112
4.9	The design parameters and results for Case 4, Step 3 112
5.1	The selection of cable forces to satisfy the bounds
5.2	The cable forces in span and support regions
5.3	The point forces and moments due to anchorages
5.4	Assumed and actual reactant moments
5.5	The reactant moments corresponding to the upper and lower bounds of line of thrust zone
7.1	The selection of the bottom flange thickness with trapped mo- ments and temperature effects: Step 1
7.2	The selection of the bottom flange thickness with trapped mo- ments and temperature effects: Step 2

Notation

A_b	Area of the bottom flange
A_{b-min}	Minimum area of the bottom flange allowed to prevent cracking
A_{b-span}	Required area of bottom flange at span critical section
Ab-suppor	Required area of bottom flange at support critical section
Ac	Area of the concrete section
A_t	Area of the top flange
A_w	Area of the web
bz	Breadth of the section at a height z from the bottom
с	Ratio between concrete cover required and depth of the section
c_1	Position of top fibre (measured from centroid, always -ve)
c_2	Position of bottom fibre (measured from centroid, always +ve)
COR	Cantilever Overhang Ratio as defined on page 105
d	Depth of the section
е	Eccentricity of prestressing cable (measured +ve downwards from centroid)
e_{k1}, e_{k2}	Eccentricity at kern points (Z_2/A_c) and (Z_1/A_c)
emin	Minimum eccentricity allowed considering cover limits
e _{max}	Maximum eccentricity allowed considering cover limits
e_p	Eccentricity of line of thrust
e_{p-min}	Minimum eccentricity of the line of thrust (upper bound)
e_{p-max}	Maximum eccentricity of the line of thrust (lower bound)
e _s	Eccentricity of actual cable profile
e_1	Distance to centroid of idealised top flange from the centroid of section
e_2	Distance to centroid of idealised bottom flange from the centroid of section
E	Young's modulus of the section
E_z	Young's modulus at a height z from the bottom fibre
f_c	Permissible stress of concrete in compression
f_{ct}	Permissible stress of concrete in compression at transfer
fcu	Characteristic cube strength of concrete
fow	Permissible stress of concrete in compression at working load
f_t	Permissible stress of concrete in tension
ftemp	Temperature stresses due to direct strain and curvature
ftt	Permissible stress of concrete in tension at transfer
ftw	Permissible stress of concrete in tension at working load
Ι	Second moment of area about centroid

$l_{l(i)}$	Distance measured to left change point from i^{th} support
$l_{\tau(i)}$	Distance measured to right change point from i^{th} support
М	External moments acting on the section
M_a	Minimum working load moment
M_b	Maximum working load moment
M_{f}	Moment range in one span (mid-span sagging less pier hogging)
M_n	Moment due to notional loads
M_u	Ultimate state moment acting on the cross section
M_{2-min}	Minimum reactant moment due to prestressing effects
M_{2-max}	Maximum reactant moment due to prestressing effects
$(M_2)_j$	Reactant moment at internal support j
$(M_t)_j$	Continuity moment at internal support j due to temperature
n	Number of supports
Ν	Number of webs of a box girder
Р	Horizontal component of the prestressing force in cable
P_B	Cable force corresponding to point B of Magnel diagram
$P_{n(i)}$	Cable force in the new cable at the i^{th} cable force change point
$P_{r(i)}$	Cable force in the running cable at i^{th} cable force change point
$P_{su(i)}$	Cable force over i^{th} support
P_t	Force in prestressing cable at transfer
P_1	Minimum prestress to satisfy moment range
P_2	Minimum prestress to satisfy lever arm
P_3	Minimum prestress for existence of line of thrust
P_4	Minimum prestress for existence of a line of thrust and maximum cable range
R	(Cable force at service)/(Cable force at transfer),
RMR	Reactant moment ratio as defined on page 64
t_b	Thickness of bottom flange
t_l	Linear transformation at left pier
tm	Linear transformation at mid-span
tr	Linear transformation at right pier
t_t	Thickness of top flange
t_w	Thickness of web
tz	Temperature at a height z above the bottom of the section
w_b	Width of the bottom flange
w _s	Clear spacing between webs
w _t	Width of the top flange

Distance measured to cross section from the left support
Distance measured from the bottom fibre
Distance to centroid from the bottom fibre
Section modulus for upper fibre, I/c_1 (always -ve)
Section modulus for lower fibre I/c_2 (always +ve)
Load factor for the ultimate limit state
Coefficient of expansion of concrete
(i = 1, 2 and 3) Factors used to represent the idealised section as
defined on page 84
Inclination of the anchor for new cable
Inclination of the running cable at force change point i
Coefficient of thermal expansion at height z
(Lever arm at ultimate)/(depth of the section)
Distribution coefficient for M_2
Inclination of lower bound of cable profile at left hand side of
the i^{th} cable force change point
Inclination of upper bound of cable profile at right hand side of
the i^{th} cable force change point
(Maximum allowable concrete stress)/(Characteristic strength)
(i = 1, 2 and 3) Factors used to represent the idealised section as
defined on page 84
Diameter of the prestressing duct
Diameter of stirrups and longitudinal reinforcement in webs
Curvature due to temperature
Direct strain due to temperature
Total curvature caused by prestressing effects

In addition to these symbols, a number of others symbols are defined and used locally.

A Depaired Series

i. D-sign documents find

The horizontaries between each of these wayses are not well defended.