Chapter 6

CONCLUSIONS

Action of the phenolic antioxidants on polychloroprene based adhesives were studied. The resulting effects were due to the stabilizing ability of the phenolic antioxidants.

Work done indicated that the adhesives on ageing release a trace amount of acid. The phenolic antioxidant used were able to reduce the amount of acid released. Out of the three antioxidants used Wingstay L had the best stabilizing effect.

It was found the acid released led to the discolouration of the adhesive. Hence discolouration was minimized by the addition of the antioxidant.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

Tests confirmed the acid released does not have a significant effect on the bond strength.

The tests showed that the viscosity increases with aging.

4

Polychloroprene based adhesives are normally multi-purpose adhesives. Hence release of acid can have adverse effects in the long run. Some materials that are bonded together are sensitive to acids. Therefore when these substrates are in contact with the adhesive (e.g. metal surfaces, fabrics) corrosion or the deterioration of the substrates can occur. The acid released will react with the iron in the container used to store the adhesives, bring about adverse effects. As time did not permit to carry on a detailed study about the influence of the released acid on the container it is suggested for future work. If the adhesive is used to bond to transparent materials or light coloured materials with time the joint will discolour and change the appearance of the object.

It is desirable to include an effective phenolic antioxidant in the composition. The amount of antioxidants incorporated into the formulation is two parts by weight per 100 parts by weight of chloroprene polymer.

It was found that fine grinding the resin and MgO before reacting with solvents increases the resistance to phasing. The maximum amount that could be incorporated into the mill mix was 6 parts by weight per100 parts by weight of polychloroprene polymer.

It was shown that incorporating a phenolic antioxidant into the formulation improves the stability of the adhesive with time and reduces the amount of acid released.

X

A.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

SUGGESTIONS FOR FUTURE WORK

⋞

A

The type of Polychloroprene used in the project is specified in chapter 2. Different types of polychloroprene available in the market could be used and observe the effect it has on the stability of the adhesive.

The resin used in the project is specified in chapter 2. It will be useful to carry out experiments using different types of resins and observing the effect it has on the amount of acid released.

The polychloroprene based adhesives on aging form a darker ring near the container wall. Initial experiments were carried out and identified that there is a reaction between the acid released and the container material. As time did not permit, further investigations were not carried out in this regard. Hence it will be useful to carry out further investigations in this matter and determine a suitable coating for the inner layer of the container or stress upon the use of an antioxidant in the formulation.

The phenoxy radical will abstract hydrogen from the antioxidant and stop the chain propagation. It will be useful to analyze the resulting products and confirm the antioxidant action.

Experiments should be carried out to identify the chemical products formed after aging in order to identify the best antioxidant to be used.

LIST OF REFERENCES

1. Kinloch A.J., (1987), *Adhesion and adhesives, Science and Technology*, Chapman and Hall Ltd.

2. Packham D.E. (1992), *Hand book of adhesion*, Longman scientific and technical, UK Ltd.

3. Irving Skeist (1990), *Hand book of adhesives - Neoprene based solvents and latex adhesives by* Guggenberger S.K. Van Nostrand Reinhole, New York.

4. Irving Skeist (1990), *Hand book of adhesives – Fundamentals of Adhesion* by A.N. Gent and G.R. Hameed, Van Nostrand Reinhole, New York.

5. Shields J. (1984), *Adhesives hand book – Adhesive materials and properties*, Butterworths Publications.

6. Irving Skeist (1990), *Hand book of adhesives – Introduction to adhesives by* Irving Skeist and Jerry Miron. Van Nostrand Reinhole, New York.

7. Tosoh corporation, Jokyo Japan, *Skyprene - G - 40S - 1* Technical information

8. Guptha S.D. (1969) *Polychloroprene adhesives for foot wear*, Journal of the Indian leather technologies association.

10. Irving Skeist (1990), *Hand book of adhesives - Neoprene cements by* S.B. Louis, Van Nostrand Reinhole, New York.

11 Technical information by CECA, *Reactive phenolic resins for* polychloroprene based contact adhesives

12. DuPont company, *Solvent systems for Neopren*, Technical information, DuPont elastomers for adhesives, DuPont company.

13. Ashford R.D. (1994) *Ashford's Dictonary of Industrial Chemicals*, Wavelength publications Limited.

14. Schnabel W. (1981), *Polymer degradation*, *Principles and practical applications*, Macmillan publishing Co.

15. Scott G. (1981), *Development in polymer stabilization - 4*, Applied science publishers Ltd. London.

16. Technical information, *Wingstay L for adhesives*, Good year tire and rubber company.

17. The rubber technologist's pocket book, Vulnax International Limited.

18. Gillen et al (1995) Predictions of elastomers life time from accelerated thermal aging experiments. Sandia National Laboratories, Albuquerque.

Williams J.R. (1997) Advanced bonding systems. Mydrin Ltd.

Christell et al (1997) *Polychloroprene composition*. DuPont Dow Elastomers.

Harmsworth *et al* (1995) *Improvement in the ozone resistance of elastomers with non-staining antioxidants.* Paper presented at rubbercon '95 Goteborg, Sweden

19. Coe D.G. Technical information, *Neoprene solvent based adhesives*, DuPont Co.

20. Hallifax J.B., Parsons J.A., (1968) *Manual of light production engineering adhesives*, Business books Ltd.

21. Standard test method for acid value of organic coating materials- ANSI-ASTM D 1639-70 (1976)

22. Bassett J., Jeffery G.H., Denney R.C., Mendham J.,(1978) *Vogel's text book* of quantitative analysis, Longman publishing Co.

23. Lovibond Tintometer model F instruction manual

¢.

24. Brydson J.A. (1978), *Rubber chemistry*, Applied science publishers Ltd. London.

25. Delor F., Lacoste J., Lemaire J., Barrois- Oudin N., Cardinet C.,(1996) *Photo and thermal aging of Polychloroprene.* Elsevier science Ltd.

- 26. Musch R. *et al* (1994) *Polychloroprene cross linking for improved aging resistance.* Paper presented at the 146th ACS rubber division meeting.
- 27. Bttowmick, *et al* (1988) Hand book of elastomers Halogen containing elastomers, Marcel Dekker inc.
- 28. Brydson J.A. (1988), *Rubbery Materials and their compounds*, Elsevier applied science publishers Ltd. Page 376

