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Abstract 

Zero carbon homes have met with mixed reactions from key stakeholders within the housing and 

energy sectors, with many bespoke zero carbon designs being rejected as commercially unviable. This 

paper draws on research conducted with The University of Surrey and Zedfactory Architects to 

outline key factors which should be considered in order to facilitate the adoption of a more 

commercialised approach to zero carbon design. Key design criteria for zero carbon homes are 

outlined before presenting a housing model designed to provide the best balance between the 

financial, technical and social elements involved. The paper then demonstrates the importance of 

reducing the additional costs associated with zero carbon design through integrating energy efficiency 

and generation technologies into the building fabric; by substituting the use of traditional building 

materials with energy generating ones it is possible to create both an energy and economically 

efficient housing model. The proposed energy system adopts an integrated approach to the selection 

of space heating, water heating and ventilation technologies in order to create a design that is as user 

friendly as possible. By adopting this approach it is argued that it is possible to develop a model 

which does not require major changes in household behaviour patterns to work. The paper also 

highlights the importance of carefully balancing energy production and exportation to grid connected 

sources to develop a zero carbon home that can substantially reduce the financial burdens of rising 

energy costs.  
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1. Commercial Viability of Zero Carbon Homes: An 
Introduction to the Design Challenge 

Zero carbon homes have been met with mixed reactions by key stakeholders within the housing and 

energy sectors, with many bespoke zero carbon designs being rejected as commercially unviable. This 

is characterised by bespoke zero carbon homes failing to progress beyond the boundaries of 

innovation parks such as those at the ‘Building Research Establishment (BRE) Innovation Park’ in the 

UK. This paper develops a methodology for designing zero carbon homes for commercialisation 

based on incorporating key socio-technical, economic and political factors at the design stage. The 

design philosophy attempts to address key barriers in order to minimise potential hurdles to 

commercialisation whilst also utilising key political drivers.  

Commercialised zero carbon designs require changes to current housing construction methods and it 

is essential these factors are taken into account at the design stage. As well as methodological changes 

to building design there are also fundamental changes required within the political, economic and 

socio-technical environment that surrounds the housing industry. Changes to areas such as building 

practices, the relationships with energy supply and consumption, changes to the relationships between 

consumers and energy supply companies, and an appreciation of how finance and economics affects 

the buying behaviour of property owners are all important considerations. There are also critical 

consumer considerations to take into account such as changes to the aesthetics of houses, user practice 

changes for zero carbon living, cultural habits and social practice changes (Lee 2011; Roy et al 2007). 

These create distinct design challenges for architects and designers to address if commercialised zero 

carbon homes are to be successfully developed.  

The initial design challenge for those involved with zero carbon housing is what the definition of a 

zero carbon home should actually be. This is a field open to some debate and in the UK the choice is 

between the easier to meet regulatory definition or a more holistic definition, with the definition 

adopted substantially altering the design parameters. The UK regulations will only account for the ‘as 

built’ building services loads; these are only the loads covered within the building regulations such as 

lighting and heating, however, they will exclude the unregulated emissions from appliances such as 

cookers, televisions and computers (HM Treasury & BIS 2011; The Zero Carbon Hub 2011). By 

designing under these parameters it calls into question the appropriateness of this regulated definition. 

Whilst it is arguably easier and more cost effective for commercial actors to design to these standards 

it is questionable whether this weaker standard will make a significant contribution to UK’s 2050 CO2 

reduction targets. This is supported by estimations that unregulated emissions account for 

approximately a third of total emissions and as such a zero carbon home under regulatory parameters 

will still be allowed to emit around a tonne of CO2 per annum (The Zero Carbon Hub 2011). With an 

estimated 2 million additional homes required in the UK by 2016, this regulatory standard would still 

create an additional 2 million tonnes of CO2 annually (The Select Committee on Environmental Audit 

Twelfth Report; Zero Carbon Hub 2011).  

The regulatory responses to such polarised viewpoints seem to be favouring industry based concerns 

surrounding maintaining housing volume and affordable housing levels, however, to create a new 



build housing stock that can effectively decarbonise the sector a harder line is required. A design 

philosophy that incorporates the offsetting of the total annual carbon emissions associated with total 

energy consumption from both regulated and unregulated sources should therefore be adopted as the 

standard for zero carbon design. This paper argues that by adopting an innovative holistic approach to 

critical socio-technical, economic and political factors it is actually possible to create economically 

viable zero carbon homes that meet this stricter criteria. At the same time it will also be possible to 

protect consumers from potential economic crises such as energy price related fuel poverty. As such 

the approach advocated here is based on offsetting total annual energy consumption with renewable 

energy generation using grid connected microgeneration technologies (Dunster, Simmons and Gilbert 

2007). It is acknowledged that meeting these design parameters requires importing from the grid 

during times of poor renewable generation and exporting to the grid during times of over production, 

however, over the course of a year a zero carbon home should be designed to balance its entire energy 

loads (Dunster, Simmons and Gilbert 2007).  

2. The Role of Incorporating Policy Drivers within a Design 
Philosophy  

Innovations commonly face cost based barriers and inhibitive payback periods preventing their 

successful commercialisation (Keegan et al 2007).  In recognition of this and in UK governmental 

responses to supra-national energy policy such as the ‘EU Renewables Directive 2009’, key political 

developments have focused on improving the investment potential of renewables. As such an 

understanding of how to leverage policy instruments to improve the commercial viability of zero 

carbon design has been developed. By conducting a policy analysis of subsidies for energy 

technologies for zero carbon design, a key tool for offsetting the cost of renewable technologies has 

emerged from this research. Incorporating tariff eligible technologies into the energy system creates 

the potential to develop price justifications for additional expenditure and address potentially 

inhibitive payback periods (Jager 2005; Massini and Menicheti 2010). Research has shown that the 

cost of creating zero carbon homes ranges from £400 to over £800 per m
2
 more than current building 

regulation homes (Cyril Sweet 2007, Code for Sustainable Homes 2010). If these additional costs can 

be matched though ongoing returns from tariff payments the potential to stimulate demand for 

widespread uptake could therefore be greater (Jager 2005; Massini and Menicheti 2010).    

2.1 The Role of Addressing Barriers to Commercialisation in Zero 
Carbon Design 

It is critical to develop an understanding of commercial barriers when developing a commercially 

viable design philosophy. Industry analysts predominantly oppose zero carbon design on the grounds 

of affordability and consider the decarbonisation of the housing stock as constraining new build 

construction volumes by increasing cost, risk, and skill based issues (Select Committee on 

Environmental Audit 2008; Architects journal 2008; Goodier and Pan 2010; Ball 2010). In the UK the 

commercial house building market represents the largest market segment, at around 75% of the total 

annual market, and can therefore be considered as the most influential actor group within the house 

building regime (Calcutt 2007; Welling 2006).   



Perhaps the most consistent commercial barriers centre on cost based objections (Goodier and Pan 

2010; Ball 2010). As zero carbon homes involve increased material and technology costs this is 

problematic as zero carbon design is inherently more expensive. As such overcoming key cost based 

barriers will require innovative solutions and lateral thinking in order to reduce expenditure and 

justify additional expense. The table below details the results of a cost comparison of zero carbon 

homes in the UK. 

Table 1 UK Build Costs for Zero Carbon Homes 

Project Costs Per m2

Building regulations 1,070£                                                                      

Bere Architects Code 6 1,700£                                                                      

Miller Zero Aircrete house 1,608£                                                                      

Miller House Merton Rise 1,423£                                                                      

Kingspan Lighthouse 1,938£                                                                      

Source: Cyrill Sweet 2007, Code for Sustainable Homes 2010;Bere Architects 2010,Miller Zero 

Homes 2010, Kingspan 2009)  

It is important to acknowledge that these are demonstration projects and as such have not benefited 

from the cost benefits that scale production can bring, however, the reasons why the properties have 

not broken into the commercial market significantly contribute to this. One such issue is the current 

lack of established sales values for zero carbon homes and the effect this has on whether or not a 

sufficient market premium can be commanded. In the UK this is compounded firstly by the way 

modern methods of construction are poorly understood by the banking sectors and secondly due to the 

lack of appreciation given to the economic benefits a zero carbon home can bring (Zero Carbon Hub 

2009). As such housing valuations have resulted in lower mortgage offers made for higher capital cost 

zero carbon homes. This is created by the valuation system not fully accounting for the financial 

benefits of low carbon technologies and unjustly penalising innovative designs for perceived 

maintenance issues and technological unknowns (Zero Carbon Hub 2009). Whilst education in the 

sector will be key to addressing this it is also implicit that for zero carbon homes to diffuse into 

current market practices, the amount of technologies employed to decarbonise the home must be 

minimised and standardised in order to give financial actors greater confidence in the reliability and 

usability.  

A second key issue is that energy efficiency and low carbon living are just two factors that encompass 

a range of purchase decisions for housing (CABE 2005; RICs 2010). Whilst these factors are moving 

up the list of decision factors there is an inherent limit to the impact they can have on demand for a 

higher priced home (CABE 2005; RICs 2010). Without a premium for a zero carbon home, 

commercial roll-outs will be unlikely as zero carbon designs will be the least profitable option. This 

firmly emphasises the need for cost reduction to be a priority design element incorporated at the 

design stage. 

A third issue stems from perceptions of consumer willingness to adopt designs which require user 

practice changes to energy service provision. Before embarking on large scale zero carbon housing 

projects it is essential for commercial actors to take into account the level of consumer demand within 



the marketplace, however, there are significant commercial concerns regarding demand side variables.  

Unfortunately, in the UK the resistance to technologies that require significant user practice change is 

considered high (Castell 2010). If the market is thus limited the investment required to instigate a 

commercial roll-out of zero carbon homes is unlikely. To widen the market potential beyond green 

motivated consumers the impact that technological innovations have on established user practices 

need to be minimised. 

The combination of these commercial barriers also has the effect of increasing risk factors for 

commercial actors. It creates a situation where higher construction cost homes potentially offer lower 

profitability, whilst the market demand is un-established. This creates such a significant risk factor 

that commercial viability will continue to be questioned until the first projects are completed to prove 

otherwise. Unfortunately, in a risk adverse market in an economic downturn this is unlikely to occur. 

As such it is up to the designers to attempt to reduce the impacts of these barriers though considered 

and intelligent design and thus attempt to establish more commercially viable options. 

2.2 An Integrated Design Philosophy for Zero Carbon Homes 

Based on this research it was identified that there are 4 key requirements when developing a design 

philosophy for a zero carbon home. Firstly, a zero carbon home should offset the entire annual energy 

load of the building via grid connected microgeneration technologies to make maximum impact and 

investment return. Secondly, cost reduction should take priority when designing to achieve this. The 

methodology for assessing cost reduction is based on offsetting the additional ‘over and above costs’ 

of creating a zero carbon home when compared against a benchmark cost of a building regulations 

home. This is based on the methodology used in the Sir Cyril Sweet Report (2007). Thirdly tariff 

eligible technologies should be utilised where possible in order to generate an income and thus offset 

the additional costs of zero carbon design. Finally, technologies required to create the zero carbon 

home should be minimised in order to reduce both costs and the requirement for user practice change.  

Whilst it is acknowledged that decarbonisation can be achieved using community led energy systems, 

a microgeneration led approach was adopted in the design philosophy for this study. This was in order 

to develop properties that did not rely on community based infrastructure projects and thus remove the 

associated complex legal, financial and managerial arrangements required for community led energy 

service companies. A microgeneration led approach was also preferred in order to develop zero 

carbon homes that could function on a single unit basis and that generated investment returns for 

individual property owners. A detached 4 bedroom home with a gross internal area of 150 m
2
 was 

chosen as the basis for comparison. Detached properties constitute 22% of the UK housing market 

(Housing and Planning Statistics 2009). A market analysis of the best available microgeneration 

technologies was conducted in order to identify the costs involved with different market leading 

technologies.  

Economic modelling was conducted using various combinations of best available technologies in 

order to develop a valid technical base for comparison. By establishing what was technologically 

possible and then developing a housing design based on it, it was possible to work out the cost and 

economic parameters, such as implementation costs, build costs, running costs and cash flows for a 



variety of technically viable options. Input-output modelling was conducted based on energy losses, 

energy usage, energy production from key microgenerating technologies and energy reduction from 

key energy efficiency technologies. This was used to verify that the designs developed were 

technically viable based on commercially available niche technologies. These technologies were then 

combined to create holistic energy platforms for the zero carbon design. Once a selection of 

technically viable solutions were identified and a range of integrated options developed, a full cost 

based analysis was conducted into each potential option. Options included technology platforms based 

on varying combinations of PV, biomass boilers, wood burning stoves with back boilers, air and 

ground source heat pumps, passive and mechanical heat recovery ventilation systems and thermal 

stores. 

3. Developing the Design Model 
 
3.1 Reducing Cost Barriers: An Integrated Approach to Energy 

Generation and Material Substitution 

When the design philosophy is applied to the building fabric of the property it must balance the need 

to reduce base heating loads with the need to reduce costs. To achieve this the property was designed 

with a timber balloon frame using a wall build up of 15mm cement board, 75 x 200mm C16 studs at 

600mm centres with 200mm mineral wool in between, 15mm oriented strand board, 50x 100mm C16 

battens at 450mm centres with 100mm mineral wool insulation in between, breather paper and 25 x 

38mm battens at 400mm centres with 15mm cement board and render. The combined 300mm of 

insulation enabled low wall U-values to be created at low cost. Combined U-values of 0.13W/ m
2
/k 

were achieved at 300mm insulation thickness. In combination to reducing thermal demand via 

insulation, terracotta thermally massive blocks were included in the building design. The thermal 

mass was integrated into the exposed ceiling soffits in the ground floor ceiling. To reduce over and 

above costs, the thermal mass was used to substitute traditional flooring/ceiling materials and finishes 

with the thermally massive solution.  The combination of timber frame design, thermal mass 

integration and insulation choice and interior fit out had a build cost of £921/ m
2
.  

   

  Image 1.1: Render of Building Design              Image 1.2: Elevations of Building design 



The renewable energy technology analysis highlighted that photovoltaics were a cost effective choice 

for electricity generation. PV panels were chosen due to the ability to provide a solid return on 

investment via the FIT’s scheme as well as having negligible user input requirements. However, it 

was identified that roof mounted PV and standard BIPV were not the most economical way to 

incorporate PV panels. This was due to the need to install a roofing build-up and then include PV 

panelling as an additional cost on top. Whilst the tariff income could provide a return on roof mounted 

PV it was not maximised for an over and above cost methodology. If a roof mounted PV solution was 

pursued, RHI eligible biomass and ground source heating technologies would have to be incorporated 

into the energy system design to further offset costs via tariffs.  This reduces the integration of the 

system and increases the impact on user practice change by requiring both biomass and solar thermal 

technologies. Through conducting the technical-economic modelling for PV it showed that if the 

roofing substrate was replaced by PV it could be more cost effective. As such the PV panel was re-

engineered to create an integrated electricity generating roofing tile that eliminated the need for a sub-

roof. Internal and external images are detailed below. 

               

Image1.3 External Plan of Integrated Roof            Image 1.4 Internal Image of Integrated PV Roof 

According to calculations based on Langdon (2012) figures for roofing systems a roof occupying a 

similar space to that required for the energy generating roof would cost between £4,500 -£5,500 

depending on roof type. This equates to around £83 per m
2
. The cost of the PV roofing system 

equated to £170 per m
2
 and thus the over and above cost to be justified was only £87 per m

2
. For 

comparison a roof mounted system would add £100-£300 per m
2
 on top of the build cost.  

To integrate the PV panel into the roof involved engineering modifications to enable the conversion of 

a PV panel into a roofing substrate. The edge extrusions were reengineered to utilise an overlapping 

flashing cap to create a weather proof seal to the PV tiling system. EPDM seals and gaskets were used 

in the panel joints to increase the resistance to weather conditions, especially wind driven rain. A 

condensate drainage channel was also developed to allow the panels to be securely fastened to the 

rafters to protect against wind uplift. The roof has been tested to meet appropriate British standards. 



   

Figure 1.3: Integrated Roofing Panel and System Installation Details 

The size of the PV system was 9kW. This was designed to offset the unregulated energy demand for 

in use building demands such as cooking and entertainment as well as for regulated space heating and 

hot water loads.  

The reduction in costs for using an integrated PV roof allowed for a larger PV array to be 

incorporated more cost effectively. This meant that all energy systems could be electrified with the 

combined load offset. As such space heating and hot water requirements were satisfied using an 

integrated hot water cylinder with an exhaust air heat pump and under floor heating coils, illustrated 

in image 1.4. An engineering modification was made to the heat pump to allow a ‘Mechanical 

Ventilation Heat Recovery (MVHR)’ unit to be added to the heat pump. This system was designed to 

only use the parasitic load from the heat pumps fan and thus require no additional electrical load. As 

such the entire building heating and ventilation system was integrated into one unit. The design was 

also adapted to gain a passive energy gain for the heat pump by drawing air in from under the PV 

roof, using passive solar gain to preheat the fresh air supply to the exhaust air heat pump. The 

ventilation system was designed to provide 0.3-0.5 air changes per hour to meet building regulations 

and was 70% efficient at heat recovery. The modelled heat pump efficiency produced an average co-

efficient of performance of 3.5 due to the use of the preheated air and protection from negative 

external temperatures in the winter. 

An additional benefit from the integration of these systems was that it reduced the amount of user 

controls and user practice changes required. The controls could be locked to provide water at 37 

degrees to the heating circuit and 42 degrees to the taps to maintain maximum efficiency. This system 

provided the households total energy demand and effectively substituted all traditional heating 

systems from the property. As such the entire energy demand of the building was satisfied via the heat 

pump and PV platform without a requirement for natural gas or biomass. The table below shows the 

housing data inputs and the resulting energy balances. 

 



Table 2: Housing Data and Energy Balances 

Gross Internal Floor Area (GIFA) 150 m2

Area of Insulated Wall 185 m2

Area of Glazing 36 m2

Total Electrical Consumption 7,444 kWh

Ventilation Heat Loss ( 70% efficiency) 463 kWh

Total Heat Demand ( Space and Hot Water for occupancy) 12,289 kWh

Annual Heat Surplus - kWh

Annual Electrical Surplus 656 kWh

Housing Data and Energy Balances

 

The total costs of the combined energy system for the zero carbon design was £19,187 however the 

over above costs, once allowances for the substitution of traditional materials was conducted was 

£10,187. 

3.2 The Economic Viability of the Integrated Approach: A Net Benefits Model 

To establish the economic net benefit of the design, energy balances were linked to tariff incomes 

derived from either FITS and/or predicted RHI returns where appropriate (accounting for inflation and 

predicted fuel price escalation). A compound annual growth rate of 3% was used for inflation and a 

compound annual growth rate of 6% was used for fuel price escalation. Fuel price escalation is 

predictive and subject to significant uncertainty but the mean average of Ofgem’s (2011) ‘Project 

Discovery’ and DUKEs (2010) was used. The model was projected forwards over 25 years to bound 

investment potential to the tariff period for the Solar FITS. This was due to the FITS period being the 

longest tariff period. 

The economic model developed assumed that the extra capital costs for zero carbon design would be 

passed to the consumer. As the initial capital outlay is significant for the combined microgeneration 

platform, extended mortgage payments were assumed to be the finance method. As such the over and 

above mortgage costs were incorporated into the calculations for deriving an economic benefit. A 

mortgage rate of 5% was used over a typical 25 year mortgage period. The technical model was used 

to calculate the energy loss of the zero carbon design against energy losses of building regulations 

homes. This positive energy balance was capitalised based on the energy savings from the higher 

performing insulation and air tightness. Energy savings were calculated on 2012 energy costs for gas 

and electricity in the UK and termed avoided costs. The reduced energy demand for both regulated 

and unregulated energy loads were capitalised and an allowance made for the bought in energy 

requirement during times of low PV production as well as a cost saving for the PV produced 

electricity. The energy generated was then capitalised using the appropriate FITS rate. The totals were 

then summed and the over and above mortgage costs for the additional insulation and energy system 

components was then deducted.  The annual net benefit was thus arrived at by capitalising energy 

flows, comparing energy costs, expenditures and tariff incomes of a Building regulations home to the 

Zero Carbon design. A further calculation was also made in order to see if removing avoided costs 

from equation could create a model that was effectively net of energy costs and self-funding. The 

table below shows the predicted cash flows for buildings commissioned in 2013. 



Table 3: Cash flows Year 1(2013) 

Year 1 Figures( 2013)

Photovoltaic 

system

Mineral Wool 

Insulation

Passive Heat Exchange 

Ventilation saving ASHP

Summary 

Totals

Generated power (kWh) 8,100              N/A N/A 12,389          

Energy Saved over Building Regulations N/A 1,135                 1,081                                   3,540            

Avoided cost 43£                 6£                       6£                                         29£                84£                

Income 94£                 -£                   -£                                     -£              94£                

Bought in Energy 20-£                 -£                   -£                                     -£              20-£                

Monthly Net Benefit 118£               6£                       6£                                         29£                158£              

Monthly Income (excluding avoided cost) 74£                 -£                   -£                                     -£              74£                

Monthly Repayment 44-£                 9-£                       6-£                                         6-£                  64-£                

Monthly Cash Flow 30£                 9-£                       6-£                                         6-£                  10£                

Notes

Electricity 0.12 p/kWh

Tarrif Information 0.053 p/kWh

Delivered heat price at boiler efficiency(85%) 0.062 p/kWh

FITS linked RPI increase 3%

Price increase over inflation 6%  

The outcomes of the economic model confirm that by substituting traditional building materials with 

energy generating ones and utilising tariff technologies in a cost effective manner  it is possible to 

create an economically efficient zero carbon housing model. The outcome of the modelling 

demonstrated that the tariff incomes could offset the entire cost of developing a home to the most 

stringent zero carbon standard. The monthly profit of £10 excluding avoided cost benefits also 

confirmed that the over and above costs could be funded from the FITS income effectively making 

the energy production and efficiency package cost neutral. This is a key outcome as it could 

potentially facilitate an increase in sales price whilst not adversely impacting profitability as the over 

and above costs could be passed on to the consumer without negatively impacting them. Additionally 

the property owner would also benefit by being protected from energy price rises as the property 

would effectively be net of energy costs. The zero carbon housing model proposed here offers the 

potential for zero carbon homes to be the most economically viable homes to live in, however, the 

model does not account for affordability or the ability to obtain a higher mortgage. 

4 Conclusion 

Whilst it is possible to create technically viable zero carbon homes using a variety of different 

techniques creating homes with a potential to move beyond the bespoke level requires a broader set of 

design parameters. An appreciation of wide reaching commercial, socio-technical, political and 

economic issues is required in order to address key barriers to the widespread adoption early on in the 

design process. It has been demonstrated that zero carbon homes can be a more economical 

alternative to traditional builds, however, communications of the net benefits approach to potential 

consumers will be required in order to explain how a property with a higher build cost is actually 

cheaper to run in the long term. What this paper attempts to demonstrate is the importance of reducing 

the additional costs associated with zero carbon design through integrating energy efficiency and 

generation technologies into the building fabric and also by integrating technologies together; by 

doing so a more economic and user friendly housing design can be developed.  It is acknowledged 

that the model may not fully address all the barriers to commercialisation but it does provide a solid 

basis for future research in this field.  
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