PREPARATION AND CHARACTERIZATION OF LOW DENSITY POLYETHYLENE/MODIFIED CHITOSAN/PAPAIN COMPOSITE

By

A.M.P.B. SAMARASEKARA

Department of Materials Science and Engineering University of Moratuwa Sri Lanka

January 2010

PREPARATION AND CHARACTERIZATION OF LOW DENSITY POLYETHYLENE/MODIFIED CHITOSAN/PAPAIN COMPOSITE

By

A.M.P.B. SAMARASEKARA

Supervised By

Dr. S. U. Adikary University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

This thesis was submitted to the Department of Materials Science and Engineering of the University of Moratuwa, Sri Lanka, in partial fulfillment of the requirements for the Degree of Master of Philosophy

> Department of Materials Science and Engineering Faculty of Engineering University of Moratuwa Sri Lanka

> > January 2010

DECLARATION

"I hereby certify that this thesis does not incorporate any material previously submitted for a degree or diploma in any university and to the best of my knowledge and belief, it does not contain any material previously published, written or orally communicated by another person except where due reference is made in the text"

(Signature of the Candidate) A.M.P.B. Samarasekara

"The above particulars are correct to the best of my knowledge"Sri Lanka

.....

Electronic Theses & Dissertations www.lib.mrt.ac.lk

(Supervisor) Dr. S. U. Adikary, Head/Senior Lecturer, Department of Materials Science and Engineering, University of Moratuwa. January 2010

ABSTRACT

The objective of this research was to impart biodegradability to a polyethylene blend using Chitosan as the main additive which was extracted from fishery waste. Papain, a natural enzyme derived from papaya plant, was also used to enhance the biodegradability. The biodegradability of this Polyethylene blend was studied using low molecular weight chitosan both in the presence and absence of papain.

The influence of concentration and type of alkali on the chitin yield and chitosan obtained from deacetylation process were investigated. Low molecular weight chitosan was prepared by different depolymerization methods. This study investigated the time dependent weight loss using soil burial test, stress – strain properties and water absorption properties of the developed polymer, to evaluate the degree of biodegradability. The Fourier transform infrared spectroscopy (FTIR), Differential thermal analysis (DTA), Thermogravimetric analysis (TGA) and optical and Scanning electron microscopic investigation (SEM) were used to determine the properties of LDPE – Chitosan – Papain composite.

www.lib.mrt.ac.lk

The optimum composition for the industrial trial production was selected by considering the tensile strength, elongation, optimum degradability as well as good processability. Industrial trial production was done using composition containing of LDPE with 5% chitosan and 3% papain by weight.

Soil burial test results showed that specimens degraded by 60% in a six month period, while complete degradation occurred after one year. Since experimental analysis did not indicate formation of new bonds, it could be concluded that Chitosan, LDPE and Papain are present in the final product as a physical mixture without any detectable chemical reactions among different constitutes. Products manufactured in industrial scale also showed appreciable biodegradable properties. The biodegradation mechanism proposed for LDPE – Chitosan – Papain composite is based on the hydrolysis followed by actions of microorganisms.

ACKNOWLEDGMENT

First of all I would like to offer my deepest gratitude to my supervisors, Dr. S.U. Adikary, Head of the Department of Materials Science and Engineering, University of Moratuwa and late Dr. P. Y Gunapala, Senior Lecturer, Department of Materials Science and Engineering, University of Moratuwa, for their kind and valuable guidance, encouragement and motivating me to get on in this research work.

I am also very grateful to Mr. V.S.C. Weragoda, Senior Lecturer of Department of Materials Science and Engineering for his kind support and encouragement during my research work. I take this opportunity to thank Dr. M. Jayaratne and Dr (Mrs). N.W.V.K. Liyanage for the assistance given to me as Research coordinators.

I also thank the Dr. Susantha Siriwardana, for his valuable comments and advice on the analytical aspects of the study and his valuable time spent on my behalf.

I am very thankful to Dr. N. Munasinghe, Mr. V. Sivahar, Mr. S. P. Guluwita, Mr. S. V. Uadayakumara, Mrs. K. S. B. De Silva, Mr. Palitha Peiris and all other academic staff members of the Department of Materials Science and Engineering, University of Moratuwa for their assistance and contribution to my research work.

I am grateful to Mr. Sarath Chandrapala, Mr. Punchi banda, Mr. Marasinghe, Mr. Bandusena, Mr.Abeyarathne, Mr. Pubudu, Mr. Chaminda, Mr. Ranasinghe and other non-academic staff members of the Department of Materials Science and Engineering, for their assistance and contribution to my research work.

My thanks also go out to the Director and the staff at the Rubber Research Institute, Sri Lanka, Sri Lanka Atomic Energy Authority and Industrial Technology Institute, Colombo 07, they helped me out by providing the laboratory facilities used in the study. I especially acknowledge the support of Managing Director and staff of Shiran Poly Packs (Pvt) Ltd., and Nawaloka Polysacks (Pvt) Ltd., for their great support to produce industrial trial production.

I take this opportunity to thank Dr. (Mrs.) Olga Gunapala, Dr. Jagath Pramachandra, Mr. Kelum and Mr. Nihal and other academic and non academic staff members of the Department of Chemical and Process Engineering, for their assistance and contribution to my research work.

I thank all the students and friends of the department of Materials Science and Engineering, who assisted me in numerous ways in making my work possible and I especially acknowledge the support of Mr.M.P. K. Krishantha, Mr. A. J. L. Adikari, Mr. H. M. I. Perera , Mr. Charaka Danansooriya, Mr. Harshanath and Mr. Asanka Premathilaka.

Finally, I would like to express my gratitude to my wife, parents, sister all my teachers who have contributed so much for my success.

A.M.P.B. Samarasekara

Department of Materials Science and Engineering University of Moratuwa Liectronic Theses & Dissertations WWW.lib.mrt.ac.lk

Abstract	Ι
Acknowledgements	II
Contents	IV
List of Figures	VIII
List of Tables	XI
List of Abbreviations, Terms and Symbols	XII

CHAPTER 1	1
INTRODUCTION	1

CHAPTER	2		4	
LITERATURE REVIEW				
2.1.	Managem	ent of Polymer Waste	4	
	2.1.1. Re	cycling	5	
	2.1.2. Inc	ineration of Moratuwa, Sri Lanka.	6	
	2.1.3. Bi	odegradation heses & Dissertations	6	
2.2.	Biodegradable Polymers			
2.3.	Modes of Biological Degradation			
2.4.	Natural Biodegradable Polymers			
	2.4.1. Shrimps			
	2.4.2. Chitin		14	
	2.4.3. Chi	tosan	15	
2.5.	Enzymes		22	
2.6.	Papaya		23	
	2.6.1.	General Introduction	23	
	2.6.2.	Papaya Industry in Sri Lanka	24	
	2.6.3.	General Applications of Papain	24	

2.6.4.

Papain	Extraction
--------	------------

_

CHAPTER 3	27
METHODOLOGY	27
3. 1. Summarized Process Flow Chart	27
3.1.1. Shrimp Shell Powder Preparation	28
2. Extraction Process of Chitin	28
Extraction of Chitosan	30
Measurement of Particle Size of Chitosan	31
Fourier Transform Infrared Spectroscopy Test	31
Methods Used to Control the Molecular Weight of Chitosan	31
Use of Papain 10 mrt. ac. lk	31
Use of Hydrogen Peroxide	32
Irradiation	32
Response Surface Methodology (RSM)	32
3. 4. Papain Extraction	33
3. 5. Mixing Process	34
3. 6. Sample Preparation	34
3. 7. Testing of Samples	34
3. 7. 1. Biodegradation Tests	35
3. 7. 2. Experimental Data	35
3. 8. Industrial Trial Production	36

CHAPTER 4	37	
RESULTS AND DISCUSSION	37	
Processing of Shrimp Shells	37	
Determination of Particle Size and Particle Size Distribution		
of Shrimp Shell Powder	37	
Extraction Process of Chitin and Chitosan	38	
Chitin Extraction	38	
Chitosan Extraction	39	
Reducing Molecular Weight of Chitosan	42	
Method Based on Use of Papain	42	
Method Based on Use of Hydrogen Peroxide	43	
Irradiation Methody of Moratuwa, Sri Lanka.	44	
Response Surface Methodology (RSM)	44	
Testing of LDPE – Chitosan – Papain Blended Polymer Sheets	46	
Soil Burial Degradation	46	
Effect of Papain	49	
Measurements of Melt Flow Index (MFI)	51	
Industrial Trial Film	52	
Degradability of Industrial Trial Film	52	
Tensile Properties of Industrial Trial Film	52	
Strain Properties of Industrial Trial Film	53	
Water Absorption Test Results of Industrial Trial Film	54	
Micro Structural Changes	55	
.Proposed Mechanism Taken Place During The Biodegr	adation	56
Fourier Transform Infrared Spectroscopy (FTIR) Test Results	56	
Thermogravimetric Analysis (TGA) Results	59	
Differential Thermal Analysis (DTA) Results	60	
The Proposed Mechanism of Biodegradation	62	

Title	Page
CHAPTER 5	68
CONCLUSION	68
CHAPTER 6	70
REFERENCES	70

Contents (Contd.)

Biodegradation Mechanism of Synthetic Polymers	13
Structure of Chitin	15
Structure of Chitosan	16
Process Flow chart for development of LDPE – Chitosan – Papain polymer composite	27
Process Flow Chart of Chitin Extraction	28
Flow Chart of Chitosan Extraction University of Moratuwa, Sri Lanka.	30
E Particle Size Distribution of Shrimp Shell Powder	37
FTIR Spectrum of Chitosan (Extraction from LiOH used a Deacetylation media)	s 40
Standard FTIR Spectrum of Chitosan	41
Particle Size Distribution of Extracted Chitosan	41
Variation of Molecular Weight of Chitosan Vs Reaction T (Method Based on Use of Papain)	ime 42
Variation of Molecular Weight of chitosan Vs Hydrogen Peroxide volume (Method Based on Hydrogen Peroxide)	43
Variation of Molecular Weight of Chitosan Vs Irradiation Doses	44

	Variation of Molecular Weight of chitosan Vs reaction time in the Response Surface Methodology	45
	Variation of Molecular Weight of chitosan Vs deacetyation temperature in the Response Surface Methodology	45
	Percentage Weight Loss of Chitosan – LDPE Polymer Blends With Different Chitosan Concentrations	46
	Tensile Strength Vs Chitosan Concentration in Chitosan – LDPE Polymer Blends	47
	Percentage Elongation Vs Chitosan Concentration in Chitosan – LDPE Polymer Blends	48
	Tensile Strength Vs Papain Concentration in 5% Chitosan – LDPE Polymer Blends	49
E] N	Percentage Elongation Vs Papain Concentration in 5% Chitosan – LDPE Polymer Blends	49
	Percentage Weight Loss of 5% Chitosan – LDPE – Papain Blends With Different Papain Concentrations	50
	Melt Flow Index of 5% Chitosan Blends With Different Papain Concentrations	51
	Weight Loss Vs Time of The Chitosan – LDPE – Papain Blended Industrial Trial Film	52
	Tensile Properties of Industrial Trial Film	53
	Strain Properties of Industrial Trial Film	53
	Percentage Water Absorption of Industrial Trial Film	54
	Surface of Sample (Before burial)	55

Figure No.	No. Figure Name	
4.22	Surface of Buried Sample after 4 weeks	55
4.23	Surface of Buried Sample after 12 weeks	55
4.24	Surface of Buried Sample after 24 weeks	55
4.25	FTIR Spectrum of Pure LDPE and LDPE + Chitosan + Papain (Final Product)	56
4.26	FTIR Spectrum of Pure Chitosan and LDPE + Chitosan + Papain (Final Product)	57
4.27	E FTIR Spectrum of Pure Papain and Chattons LDPE + Chitosan + Papain (Final Product)	58
4.28	TGA Curves	59
4.29	DTA Curves	60
4.30	Mechanism of (a). Radical and (b). Polysaccharide depolymerisation	64
4.31	Deacetylation of chitin to form chitosan and hydrolysis to form oligosaccharide	65
4.32	FTIR Spectra of Final Product (Before and After the Degradation)	66

List of Figures (Contd.)

List	of	Tables	
------	----	---------------	--

Table No.	Table Name	Page
2.1	The major properties of Low Density Polyethylene	05
2.2	Global consumption of biodegradable polymers by polymer type for years 2000 and 2005	10
3.1	Chitin Extraction Methods by varying Deprotenization Conditions	29
3.2	Chitin Extraction Methods by varying Papain Concentration	29
3.3	Chitosan Extraction Methods by varying Deacetylation Media	31
3.4	Response Surface Methodology (RSM)	33
4.1	Chitin Yield and Remaining Protein Content	38
4.2	Effect of Deacetylation Media on Chitosan Yield	39

LDPE	Low Density Polyethylene
IR	Infrared
FTIR	Fourier Transform Infrared
ASTM	American Society for Testing and Materials
BS	British Standards
ISO	International Standards Organization
MFI	Melt Flow Index
DTA	Differential Thermal Analysis
TGA	Thermogravimetric Analysis
NaOH	Sodium Hydroxide Electronic Theses & Dissertations
кон	Potassium Hydroxide
LiOH	Lithium Hydroxide
H_2O_2	Hydrogen Peroxide
FAO	United Nations Agency of Food and Agriculture Organization
PLA	Polylactic Acid

PHA Polyhydroxyalkanoate