DESIGN OF A TECHNIQUE

TO STUDY THE STRESS RELAXATION BEHAVIOUR OF CROSSLINKED

RUBBERS SUBJECTED TO A CONSTANT TENSILE STRAIN

by

Tissa Jayasinghe (C.Eng.)
B.Sc. (Hons) Eng., MIE (Sri Lanka)

A dissertation presented to the
Polymer Technology Division of
the University of Moratuwa -
Sri Lanka

In partial fulfilment of the requirement for the
Degree of Master of Science in Polymer Technology

Supervisor - Dr. Kamal P Fernando
University of Moratuwa

12th May 1990.
I am greatly indebted to Dr. Kamal P Fernando of the Department of Polymer Technology of the University of Moratuwa, my supervisor who guided me throughout this work to achieve the expected outcome.

I am also indebted to Dr. (Mrs) L Sivagurunathan, Head of the Department of Polymer Technology of the University of Moratuwa for her assistance and advice without which this work would not have been a success.

I would like to take this opportunity to mention the names of Messrs. B.N.R. Perera and C.T. Wilton of the laboratory with gratitude who stayed with me till late in the nights keeping the doors opened for me to continue with my experiments.

Finally I am grateful to my father who provides me with unlimited financial aid and also to my wife and children who always encourage me in numerous ways to achieve my goals.
Synopsis

Chapter 1 Introduction to stress relaxation

Chapter 2 Theories of stress relaxation and techniques

2.1 The mechanisms of stress relaxation of rubbery networks

2.1.1 Physical relaxation

2.1.2 Energy barriers of rotation and energy distribution of bonds

2.1.3 Chemical relaxation

2.2 Chemical degradation processes

2.2.1 Main chain characteristics

2.2.2 Crosslink characteristics

2.2.3 Oxidative mechanisms

2.2.4 Theory of continuous and intermittent measurements by Tobolsky

2.2.5 Intermittent measurements by Ore (ITTM)

2.2.6 Simultaneous measurements for continuous and intermittent relaxation method (SMCIR)

2.2.7 Diffusion effects on stress relaxation

Chapter 3 Apparatus for relaxation measurements

3.1 Apparatus already used in stress relaxation measurements
3.2 Proposed equipment

3.2.1 Lever mechanism

3.2.2 Grips and the staining mechanisms

3.2.3 Ageing cell

3.2.4 Load measuring device and the behaviour of the specimen / frame system

3.3 Preparation of specimens

3.3.1 Types of compounds used

3.3.2 Compounding techniques

3.3.3 Moulding / vulcanization of specimens

3.4 Preparation of equipment

3.4.1 Zero adjustment of the chart recorder

3.4.2 Calibration of the load cell

3.4.3 Fixing of the adaptor onto the load cell

3.4.4 Fixing of the specimen

3.4.5 Balancing of the lever arm

3.4.6 Preheating of the specimen

3.4.7 Straining of the specimen

3.4.8 Positioning of the oven relative to the 'Instron' tensile testing machine and the adjustment of the limit switches
The objective of this work was to design a technique to study the stress relaxation behaviour of crosslinked rubbers subjected to a constant tensile strain with provision for monitoring two independent parameters namely

a. The force on the specimen (under constant strain) at a given time,
b. The instantaneous modulus of the specimen at a given time, which is given by the gradient of the force versus deflection curve when the strained specimen is subjected to a further deformation at the time of measurement.

The importance of these two parameters lies in the fact that the decay of the force on the specimen under constant strain is a good estimate of the cleavage of the chemical bonds on the rubber network with time while the instantaneous modulus is an indication of the influence of the secondary network formed by the cleaved bonds on the rubber.

The theories of stress relaxation and the equipment available for stress relaxation measurements are discussed in detail in this work in addition to the details of the proposed technique. It should be mentioned that especial emphasis was made here to reduce the cost of equipment when compared with the standard equipments available so that this technique could be made more popular among quality control as well as research workers. In this respect, the proposed equipment was designed in such a way that the load measuring device, which is the most expensive component in the set up could be shared among number of specimens under observations, without disturbing their deformations.
Number of specimens prepared under similar conditions were tested using the proposed equipment to study its reproducibility. It was found that the decay of the force on the strained specimen with time was showing excellent reproducibility even though the instantaneous modulus did not show such behaviour. A detailed analysis of these results with further modifications recommended is given at the latter part of this work.