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Abstract 

This paper presents an approach for modelling fluid transients within a heterogeneous fluid-

saturated porous medium, through the consideration of the effective parameters that can describe 

heterogeneity. This enables the application of the classical theory of piezo-conduction to the 

study of fluid transients in a porous medium where the permeability exhibits heterogeneity. The 

paper describes recent research that lead to the development of a measure for the effective 

permeability of a porous medium with hydraulic heterogeneity and presents the basic approach 

for examining the poroelasticity problem for a fluid-saturated medium with physical, hydraulic 

and elastic heterogeneity that can exhibit direct correlations. A computational procedure can be 

applied to validate the approach that represents the effective elasticity properties through 

mathematical relationships developed in the literature. 

Keywords: Heterogeneous geomaterials, porous media, effective fluid transients, hydraulic 

heterogeneity, the piezo-conduction equation. 



1. Introduction 

Naturally occurring geologic materials are porous and they display heterogeneity at various 

scales. Heterogeneity can result from a variety of influences that range from depositional effects, 

reactive flows that can cause either dissolution or precipitation of minerals to stress induced 

alterations of the microstructure, similar to micro-cracking and damage. Determining the 

mechanical and physical properties of such naturally occurring heterogeneous geomaterials 

presents a considerable challenge to geoscientists and engineers, particularly as the hydro-

mechanical processes that are of importance to geo-environmental and water resources 

applications, including, geologic disposal of contaminants, geologic sequestration of CO2, energy 

resources recovery and geothermal energy and groundwater extraction, are largely controlled by 

the effective properties of the heterogeneous material. The effective properties in turn depend on 

the properties of the heterogeneities and their spatial distributions. In a majority of geologic 

settings the inhomogeneity is visible. An example of such a heterogeneous geomaterial is the 

Lindsay Limestone found in Southern Ontario, Canada, which is proposed as a host rock 

formation for the construction of a Deep Ground Repository for storing low and intermediate 

level nuclear waste (Selvadurai et al., 2011). The Lindsay Limestone is an argillaceous limestone, 

containing either nodular quartzitic limestone inclusions within a clayey or grey limestone or a 

quartzitic limestone containing veins of clayey grey limestone (Jenner and Selvadurai, 2011; 

Hekimi and Selvadurai, 2011 (Figure 1)).  

 

          

(a)                                                    (b) 

Figure 1. The Lindsay Limestone.  

(a) A 406 mm cuboidal block    (b) a 120 mm detail 

The volume fractions of the species can vary but image analysis of photographic records indicate 

that samples used in the experimental research contained roughly equal proportions of the pure 

quartzitic limestone to the clayey grey limestone. An extensive research program has been 



initiated by the Nuclear Waste Management Organization, ON, to characterize the geomechanical 

properties of the heterogeneous limestone; these properties control the short term construction of 

the repository as well as the long term efficiency of radionuclide migration. The choice of the 

clayey limestone formation is dictated largely by its low permeability and its potential self-healing 

characteristics that can be attributed to the clay fraction in the grey component. The bulk 

permeability of the Lindsay Limestone can vary between 10
-20

 m
2
 to 10

-22
 m

2
, which requires 

transient techniques for its measurement. A second example of a heterogeneous geomaterial is 

Indiana Limestone; the permeability was recently investigated by Selvadurai and Selvadurai 

(2010, 2011a) using a permeameter specifically designed for measuring the near surface 

permeability of a 508 mm cuboidal block (Selvadurai, 2010a). In its general appearance the 

cuboidal region displays no overt signs of heterogeneity (Figure 2) but a detailed examination 

using steady state surface permeability measurements reveals a porous medium with a spatial 

variability in the permeability (Figure 3). The surface permeability was extrapolated to the 

interior of the cuboidal block using a kriging procedure. 

 

     
 

Figure 2. Cuboid of Indiana Limestone and the experimental configuration (Selvadurai, 2010a) 

 

Figure 3.  Permeability heterogeneity in the Indiana Limestone (Selvadurai and Selvadurai, 2010) 



2. Geomaterial Heterogeneity and Fluid Transients 

Experimental, mathematical and computational modelling conducted by Selvadurai and 

Selvadurai (2010) indicate that the permeability of the Indiana Limestone within the cuboidal 

block varies between 11×10
-15

 m
2
 and 250×10

-15
 m

2
, which represents a wide variation in the 

permeability. As discussed by Harr (1962), permeability of a geologic medium is usually the 

geomechanical property with the largest coefficient of variation, which can be attributed to spatial 

heterogeneity of the porous medium. The studies by Selvadurai and Selvadurai (2010) also point 

to the fact that although the permeability can exhibit spatial variability, it is possible to 

characterize the “effective permeability” for the heterogeneous porous medium by introducing 

suitable measures. The Wiener Bounds (Selvadurai and Selvadurai, 2010) represent the extreme 

limits for the effective permeability and several other representations, including those given by 

Landau and Lifshitz (1960), Matheron (1967), Journel et al. (1986), King (1987) and Dagan 

(1993), give useful and relatively close estimates of the effective permeability for the 

heterogeneous porous medium. Selvadurai and Selvadurai (2010) propose the following estimate 

for the effective permeability of a region with heterogeneity in the permeability: Consider a 

heterogeneous porous medium with a spatial distribution of point-wise isotropic permeability 

that corresponds to a lognormal distribution. If hydraulically constrained one-dimensional 

permeability through this region, measured in n  directions, is denoted by nK , then the 

effective permeability of the porous medium of the region is given by 

 

1 2 3......SS n
eff nK K K K K     (1) 

Computational research by Selvadurai and Selvadurai (2011b) convincingly proves that this 

assertion is valid for any type of flow patterns initiated within the porous medium. Guided by this 

research, it is natural to enquire whether fluid transients in heterogeneous porous media could be 

examined in a similar way, where effective parameters are assigned to variables encountered in 

the formulation of tests such as the hydraulic pulse test. For example, the transient decay of the 

reduced Bernoulli potential ( , )t x  (which consists of only the pressure and datum potentials) in 

the fluid-saturated pore space of a homogeneous geomaterial is governed by the piezo-conduction 

equation 
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where K  is the permeability, n  is the porosity,   is the fluid viscosity, wC  is the 

compressibility of the pore fluid, effC  is the bulk compressibility of the porous skeleton, x  is a 

position vector, t  is the time variable and 
2  is Laplace’s operator. The piezo-conduction 

equation can be solved for an appropriate experimental configuration where the decay of the fluid 

potential within a confined fluid region in contact with a surface of the saturated medium is used 

to estimate the permeability of the porous medium. In the instance when a hydraulic pulse test is 

conducted in a fluid-saturated porous medium with heterogeneity in the physical, mechanical and 

fluid transport characteristics, the partial differential equation governing the transient fluid 

transport problem can be formulated in relation to the effective values for the permeability ( )K , 

the compressibility of the porous skeleton ( )effC and porosity
*( )n . It should be noted that such 

a reduction is applicable provided the spatial variations in the properties of the porous medium 

are small. Consider a hydraulic pulse test that is conducted in a fluid-saturated heterogeneous 

porous domain, where the effective values corresponding to the heterogeneities are used in the 

formulation. The partial differential equation governing the time-dependent fluid pressure in the 

porous medium is given by (Selvadurai, 2000, 2009; Selvadurai et al., 2005) 
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subject to the boundary and regularity conditions  
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and the initial condition  

 ( ,0) 0z       (5) 

In (4), ( / )a w wAK V C   , where A  is the cross-sectional area of the sample and wV  is the 

volume of the fluid that is in contact with the surface area A  and subjected to a potential of the 

form  

 0(0, ) ( )t t      (6) 



where ( )t  is the Dirac delta function. The initial boundary value problem defined by (3) to (6) 

can be solved using Laplace transform techniques and the result of interest to the hydraulic pulse 

test, namely the time-dependent decay of the fluid potential in the pressurized cavity region, is 

given by 
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where Erfc( )x is the complementary error function defined by 
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and 
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The result (7) can be used to examine the accuracy of the representation of the properties ( )K x , 

(x), (x) and ( )n x  through their corresponding effective representations K , E  ,   and n . 

3. Computational Modelling of Transient Flow 

We now examine, computationally, the transient fluid flow problem described previously within 

the context of its application to a typical heterogeneous porous medium similar to the Indiana 

Limestone examined by Selvadurai and Selvadurai (2010). Hydraulic pulse tests are specifically 

conducted on geomaterials of relatively low permeability and the Indiana Limestone is considered 

to be a porous medium where the permeability can be determined from steady state tests rather 

than transient pulse tests.  The examination of pulse tests conducted on Indiana Limestone is 

sufficient for the purposes of demonstrating the reliability of the representation of the effective 

properties of a heterogeneous porous medium by appeal to measures such as the geometric mean.  

We consider the decay of a hydraulic pulse conducted in Indiana Limestone, with permeabilities 

derived from the steady state tests described previously but extended to cover 1000 sub-regions of 

homogeneous permeability conforming to a lognormal distribution (Figure 4). To computationally 

examine the effects of heterogeneity on the performance of a pulse test, we construct a synthetic 



heterogeneous medium where the upper and lower bounds for the variables are specified and 

variation in the properties relevant to the examination of hydraulic pulse tests (i.e. the 

permeability ( )K x , the elastic modulus E(x), the Poisson’s ratio ν(x) and the porosity ( )n x ) are 

all assumed to correspond to lognormal distributions. In the domain of interest to the hydraulic 

pulse tests, each sub-region is assigned a property corresponding to a value that is randomly 

selected from the lognormal distribution. The selected distribution satisfies the Kolmogorov-

Smirnoff Test (Massey Jr., 1951) and establishes the applicability of the lognormal distribution 

with a 95% confidence level. It is further assumed that the compressibility of the porous skeleton 

and the porosity correlates directly with the permeability. Experimental investigations conducted 

by Selvadurai and Głowacki (2008) and Selvadurai and Selvadurai (2010) indicate that the 

elastic modulus, Poisson’s ratio and porosity of the Indiana Limestone can vary in the ranges of 

(23.3,70.0) GPaE , (0.207,0.300)   and 
* (0.16, 0.30)n  respectively. 

 

Figure 4. Cuboidal domain with hydraulic heterogeneity  

To determine the effective compressibility of the cuboidal element with heterogeneity in the 

compressibility, we subject the cuboidal region to states of oedometric compression and pure 

shear (Davis and Selvadurai, 1996; Suvorov and Selvadurai, 2011), in order to determine  
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and these results yield 32.06 GPaE   and 0.216  , which can be used to estimate the 

effective compressibility skC  of the heterogeneous porous skeleton from the relationship 
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Ideally, the effective properties of the heterogeneous porous skeleton should be estimated by 

subjecting the entire heterogeneous element, separately, to oedometric compression in three 

orthogonal directions and pure shear in three orthogonal planes. An alternative approach is to 

directly subject the porous medium with elastic heterogeneity to isotropic compression and to 

compute the effective compressibility of the medium by determining the overall volume change. 

Both these procedures give almost the same estimate for skC  of ~ 0.53 x 10
-7

 m
2
 /kN. The 

effective porosity of the cuboidal porous element with porosity heterogeneity can be estimated in 

a straightforward manner using the arithmetic mean. It can be shown that the effective values of 

the parameters of interest to the analytical modelling of the response of hydraulic pulse tests can 

be evaluated as follows: 

15 2 10 273.96 10 m ; 0.53 10 m / N ; 0.196skK C n         (12) 

 The hydraulic pulse test is modelled by finite elements and with properties assigned the spatial 

variations that conform to lognormal distributions and taking into consideration the correlations 

indicated previously. We consider the problem of a hydraulic pulse test conducted on a 508 mm 

cuboidal region of Indiana Limestone. The exterior lateral boundaries of the region are subjected 

to null Neumann boundary conditions for fluid flow. No other boundary conditions can be 

prescribed on the deformations since the governing partial differential equation strictly relates to 

the potential field ( , )z t . In order to simulate the fluid reservoir of volume wV  that is subjected 

to the pressure pulse defined by (4), we consider a finite enclosure with cross sectional area A  

that is in contact with the porous medium; the boundaries are non-deformable and the 

permeability of the region is significantly larger than a plausible value for the rock that is being 

tested. This procedure was proposed by Selvadurai (2010b) and can successfully model pulse 

tests. At the start of the hydraulic pulse tests the fluid pressure in the reservoir region will be 

finite, whereas the fluid pressure in the porous domain will be zero. The discontinuity in the fluid 

pressures is accommodated for in the analytical solution (7), whereas numerical instabilities can 

occur in the computational simulations if suitable mesh refinement and time discretizations are 

not adopted. The computations should therefore consider adaptive algorithms in space and time to 

account for this requirement. In this research, however, extensive mesh refinement and small time 

steps are adopted to ensure stability of the solutions. The mesh refinement used in the study is 



illustrated in Figure 5. Both the "fluid" and the porous domains are discretized using Lagrangian 

( 0C  continuity) cuboidal elements. The computational approach is used to develop a solution to 

the problem of a one-dimensional hydraulic pulse test that is conducted on a heterogeneous 

porous medium where the relevant parameters exhibit lognormal variations. The computational 

solutions were developed using the multi-physics code COMSOL™.  

 

Figure 5. Finite element mesh for one-dimensional pulse tests (127,583 tetrahedral elements). 

In addition to the parameters defined by (12) we note that  
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From (12) and (13) we have 

 
2 10.197 s      (14) 

Figure 6 illustrates the pressure decay curve obtained for one-dimensional axial pulse tests 

conducted on the cuboidal sample of Indiana Limestone. Results are given for (i) one-dimensional 

hydraulic pulse tests conducted on a completely heterogeneous cuboidal porous domain where the 

permeability, compressibility and porosity of the medium exhibit lognormal distributions, and 

for (ii) one-dimensional hydraulic pulse tests conducted on a representative cuboidal element of 

the Indiana Limestone where the permeability is represented by its geometric mean and the 

compressibility and porosity are represented by their respective effective values derived through 

overall deformations of the heterogeneous domain and through the average value, respectively. 



The results also illustrate that the flow velocity pattern within the cuboidal region is 

heterogeneous but largely one-dimensional. The magnitudes of the flow velocities tend to vary but 

the flow tubes are in general uniformly one-dimensional. 

 

Figure 6. Transient decay of fluid potential in a hydraulic pulse test conducted on a cuboidal 

sample of heterogeneous Indiana Limestone 

4. Concluding Remarks 

Modelling fluid transport behaviour in naturally occurring heterogeneous porous media has to 

take into account the spatial variability of the permeability properties. In practical problems 

where the fluid flow is to be examined by appeal to a computational approach, there are two 

options; the first is to represent every part of the domain taking into account the exact spatial 

variability of the porous medium. This is manageable when the domain of fluid flow is not 

spatially extensive. For most regional ground water flow problems where the dimensions of the 

domain of interest are large, the computational modelling of the detailed permeability distribution 

is not a realistic option. Recourse must therefore be made to a simplified approach where the 

permeability can be represented through an equivalent measure. Laboratory research conducted 

on a sample of Indiana Limestone indicates that even at the scale of a cuboidal sample measuring 

508 mm, the permeability can exhibit variability. The results of the research have shown that 

when the spatial permeability exhibits a lognormal distribution, the effective permeability can be 

accurately modelled by the geometric mean. This paper extends the concepts to include 

compressibility of the porous skeleton and porosity of the porous medium, which are necessary 

when hydraulic pulse tests are conducted to determine the effective permeability characteristics of 

a heterogeneous porous medium. It is shown that the geometric mean-based effective 
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permeability, together with spatially averaged values of the compressibility and porosity, which 

also exhibit lognormal spatial variations, can be successfully used to examine hydraulic pulse 

tests. Results for the computational modelling of the pulse decay that uses the exact spatial 

variations of permeability, compressibility and porosity agree quite closely with the results for the 

pulse decay that uses the effective values for these parameters. 
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