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Abstract   

Reliability analysis is one of the major concerns at the design stage since the occurrence of failures in 

engineering systems may lead to catastrophic consequences.  Therefore, the expectation of higher 

reliability and lower environmental impact has become imperative.  Hence the inverse reliability 

problem arises when one is seeking to determine the unknown design parameters such that prescribed 

reliability indices are attained.  The inverse reliability problems with implicit response functions require 

the evaluation of the derivatives of the response functions with respect to the random variables. When 

these functions are implicit functions of the random variables, derivatives of these response functions 

are not readily available.  Moreover in many engineering systems, due to unavailability of sufficient 

statistical information, some uncertain variables cannot be modelled as random variables.  In this paper 

High Dimensional Model Representation (HDMR) based inverse reliability analysis method is 

presented for the determination of the design parameters in the presence of mixed uncertain variables.  

The method involves HDMR approximation of the limit state function, transformation technique to 

obtain the contribution of the fuzzy variables to the convolution integral, and fast Fourier transform 

techniques to evaluate the convolution integral for solving the inverse reliability problem.  The 

accuracy and efficiency of the proposed method is demonstrated through two numerical examples.  

Keywords: Inverse reliability analysis, High Dimensional Model Representation, Random variables, 

Fuzzy variables, Convolution integral   



1. Introduction   

The solution procedure for inverse reliability problems is required to determine the unknown design 

parameters such that prescribed reliability indices are attained.  One way to solve the inverse reliability 

problem is through trial and error procedure, using a forward reliability method like first-order 

reliability method (FORM) and varying the design parameters until the achieved reliability index 

matches the required target (Li and Foschi, 1998).  However, the trial and error procedures are 

inefficient and involve difficulties resulting from repetitive forward reliability analysis.  As a result 

there is considerable interest in developing an efficient and more direct approach to determine the 

design parameters for a specified target reliability level.  An inverse first-order reliability method 

(inverse FORM) was developed for the estimation of design loads associated with specified target 

reliability levels in offshore structures (Winterstein et al. 1993), later it was extended to general limit 

state functions (Kiureghian et al., 1994).  To overcome the drawbacks of the inverse FORM, artificial 

neural network (ANN)-based inverse FORM (Cheng et al. 2007) as well as polynomial-based response 

surface method (Cheng and Li, 2009) were developed.  The most probable point based dimension 

reduction method was developed for reliability-based design optimization of nonlinear and multi-

dimensional systems (Lee et al. 2008) 

Traditionally, inverse reliability methods require complete statistical information of uncertainties.  

These uncertainties are treated stochastically and assumed to follow certain probability distributions.  

However, in many practical engineering applications, the distributions of some random variables may 

not be precisely known or uncertainties may not be appropriately represented with probability 

distributions.  Consequently the non-probabilistic approach (Ben-Haim, 1995) has been rapid 

developed for describing uncertainty with incomplete statistical information by a fuzzy set or a convex 

set.  However all the methods discussed above consider either random variables or fuzzy input, but do 

not accommodate a combination of both types of variables.  In the design problem with both statistical 

random variables and fuzzy variables, if the random variables are converted into fuzzy variables by 

generating membership functions, the method may yield a design that is too conservative because 

treating the random variables as fuzzy variables loses accuracy of the uncertainties.  On the other hand, 

treating fuzzy variables as random variables by adopting approximate probability distributions may 

lead to an unreliable optimum design.  Therefore, in this paper a novel solution procedure for inverse 

reliability problems with implicit response functions without requiring the derivatives of the response 

functions with respect to the uncertain variables, is proposed to determine the unknown design 

parameters such that prescribed reliability indices are attained in the presence of mixed uncertain (both 

random and fuzzy) variables.   

2. High Dimensional Model Representation   

High Dimensional Model Representation (HDMR) is a general set of quantitative model assessment 

and analysis tools for capturing the high-dimensional relationships between sets of input and output 

model variables.  It is a very efficient formulation of the system response, if higher order variable 

correlations are weak, allowing the physical model to be captured by the first few lower order terms.  

Practically for most well-defined physical systems, only relatively low order correlations of the input 



variables are expected to have a significant effect on the overall response.  HDMR expansion utilizes 

this property to present an accurate hierarchical representation of the physical system (Rabitz and Alis, 

1999; Rao and Chowdhury, 2008).  Let the N dimensional vector 
1 2{ , , , }  Nx x xx  represent the 

input variables of the model under consideration, and the response function as ( )g x .  Since the 

influence of the input variables on the response function can be independent and/or cooperative, HDMR 

expresses the response ( )g x  as a hierarchical correlated function expansion in terms of the input 

variables as 
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where 
0g  is a constant term representing the zeroth-order component function or the mean response of 

( )g x .  The function  i ig x  is a first-order term expressing the effect of variable ix  acting alone, 

although generally nonlinearly, upon the output ( )g x .  The function  
1 2 1 2

,i i i ig x x  is a second-order 

term which describes the cooperative effects of the variables 
1i

x  and 
2i

x  upon the output ( )g x .  The 

higher order terms give the cooperative effects of increasing numbers of input variables acting together 

to influence the output ( )g x .  The last term  12, , 1 2, , , N Ng x x x  contains any residual dependence of 

all the input variables locked together in a cooperative way to influence the output ( )g x .  Once all the 

relevant component functions in Eq. (1) are determined and suitably represented, then the component 

functions constitute HDMR, thereby replacing the original computationally expensive method of 

calculating ( )g x  by the computationally efficient model.  The expansion functions are determined by 

evaluating the input-output responses of the system relative to the defined reference point c  along 

associated lines, surfaces, subvolumes, etc. in the input variable space.  This process reduces to the 

following relationship for the component functions in Eq. (1),  

  0 g g c , (2) 

     0, i

i i ig x g x gc , (3) 

        1 2

1 2 1 2 1 2 1 1 2 2 0, , ,   
i i

i i i i i i i i i ig x x g x x g x g x gc , (4) 

where the notation    1 2 1 1, , , , , , , ,   i

i i i i Ng x g c c c x c cc  denotes that all the input variables are at 

their reference point values except ix .  The 0g  term is the output response of the system evaluated at 

the reference point c .  The higher order terms are evaluated as cuts in the input variable space through 

the reference point.  Therefore, each first-order term  i ig x  is evaluated along its variable axis through 

the reference point.  Each second-order term  
1 2 1 2

,i i i ig x x  is evaluated in a plane defined by the binary 

set of input variables 
1i

x  and 
2i

x  through the reference point, etc.  Considering terms up to first-order in 

Eq. (1) yields,  

    0 2
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N
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i

g g g xx R . (5) 

Substituting Eq. (2) and Eq. (3) into Eq. (5) leads to 
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Now consider first-order approximation of ( )g x , denoted by  
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Comparison of Eq. (6) and Eq. (7) indicates that the first-order approximation leads to the residual 

error     2 g gx x R , which includes contributions from terms of two and higher order component 

functions.  The notion of 0th, 1st, etc. in HDMR expansion should not be confused with the 

terminology used either in the Taylor series or in the conventional least-squares based regression model.  

It can be shown that, the first order component function  i ig x  is the sum of all the Taylor series terms 

which contain and only contain variable ix .  Hence first-order HDMR approximations should not be 

viewed as first-order Taylor series expansions nor do they limit the nonlinearity of ( )g x .  Furthermore, 

the approximations contain contributions from all input variables.  Thus, the infinite number of terms in 

the Taylor series is partitioned into finite different groups and each group corresponds to one cut-

HDMR component function.  Therefore, any truncated cut-HDMR expansion provides a better 

approximation and convergent solution of ( )g x  than any truncated Taylor series because the latter 

only contains a finite number of terms of Taylor series.  Furthermore, the coefficients associated with 

higher dimensional terms are usually much smaller than that with one-dimensional terms.  As such, the 

impact of higher dimensional terms on the function is less, and therefore, can be neglected.  Compared 

with the FORM and SORM which retain only linear and quadratic terms, respectively, first-order 

HDMR approximation ( )g x  provides more accurate representation of the original implicit limit state 

function ( )g x .   

3. Inverse Structural Reliability Analysis Using HDMR and FFT 

The objective of the inverse reliability analysis using HDMR and FFT is to find a new MPP, denoted 

by *

HDMRx , which will be then used in the subsequent iteration of analysis.  The proposed computational 

procedure involves the following three steps: estimation of failure probability in presence of mixed 

uncertain variables, reliability index update, and MPP update.   

3.1 Estimation of Failure Probability in Presence of Mixed Uncertain 
Variables  

Let the N dimensional input variables vector 1 2{ , , , }  Nx x xx , which comprises of r  number of 

random variables and f  number of fuzzy variables be divided as, 1 2 1 2{ , , , , , , , }    r r r r fx x x x x xx  

where the subvectors 1 2{ , , , } rx x x  and 1 2{ , , , }  r r r fx x x  respectively group the random variables 

and the fuzzy variables, with  N r f .  Then the first-order approximation of ( )g x  in Eq. (7) can be 

divided into three parts, the first part with only the random variables, the second part with only the 

fuzzy variables and the third part is a constant which is the output response of the system evaluated at 

the reference point c , as follows   
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r N
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g g x g x N gx c c c . (8) 

The joint membership function of the fuzzy variables part is obtained using suitable transformation of 

the variables 1 2{ , , , }  r r Nx x x  and interval arithmetic algorithm.  Using this approach, the minimum 

and maximum values of the fuzzy variables part are obtained at each  -cut.  Using the bounds of the 

fuzzy variables part at each  -cut along with the constant part and the random variables part in Eq. 

(8), the joint density functions are obtained by performing the convolution using FFT in the rotated 

Gaussian space at the MPP, which upon integration yields the bounds of the failure probability. 

3.1.1 Transformation of Interval Variables 

Optimization techniques are required to obtain the minimum and maximum values of a nonlinear 

response within the bounds of the interval variables.  This procedure is computationally expensive for 

problems with implicit limit state functions, as optimization requires the function value and gradient 

information at several points in the iterative process.  But, if the function is expressed as a linear 

combination of interval variables, then the bounds of the response can be expressed as the summation 

of the bounds of the individual variables.  Therefore, fuzzy variables part of the nonlinear limit state 

function in Eq. (8) is expressed as a linear combination of intervening variables by the use of first-order 

HDMR approximation in order to apply an interval arithmetic algorithm, as follows  
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1

,
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i f

i r

g x z z zc , (9) 

where  


   i i i iz x  is the relation between the intervening and the original variables with   being 

order of approximation taking values 1   for linear approximation, 2   for quadratic 

approximation, 3   for cubic approximation, and so no.  The bounds of the intervening variables can 

be determined using transformations (Adduri and Penmetsa, 2008).  If the membership functions of the 

intervening variables are available, then at each  -cut, interval arithmetic techniques can be used to 

estimate the response bounds at that level.     

3.1.2 Estimation of Failure Probability using FFT  

Concept of FFT can be applied to the problem if the limit state function is in the form of a linear 

combination of independent variables and when either the marginal density or the characteristic 

function of each basic random variable is known.  In the present study HDMR concepts are used to 

express the random variables part along with the values of the constant part and the fuzzy variables 

part at each  -cut as a linear combination of lower order component functions.  The steps involved in 

the proposed method for failure probability estimation as follows: 

(i) If 1 2{ , , , }  T r

ru u uu  is the standard Gaussian variable, let * * * *

1 2{ , , , }  T

ru u uu  be the 

MPP or design point, determined by a standard nonlinear constrained optimization.  The MPP 

has a distance HL , which is commonly referred to as the Hasofer–Lind reliability index.  

Construct an orthogonal matrix r r
R  whose rth column is * * HLα u , i.e., *

1[ | ]R R α  

where 1

1

 r r
R  satisfies * 1 1

1 0   T r
α R .  The matrix R can be obtained, for example, by 



Gram–Schmidt orthogonalization.  For an orthogonal transformation u = Rv .  Let 

1 2{ , , , }  T r

rv v vv  be the rotated Gaussian space with the associated MPP 
* * * *

1 2{ , , , }  T

rv v vv .  Note that in the rotated Gaussian space the MPP is * {0,0, , }  T

HLv .  

The transformed limit state function ( )g v  therefore maps the random variables 
 
along with the 

values of the constant part and the fuzzy variables part at each  -cut, into rotated Gaussian 

space v .  First-order HDMR approximation of ( )g v  in rotated Gaussian space v  with 
* * * *

1 2{ , , , }  T

rv v vv  as reference point  can be represented as follows: 
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(ii) In addition to the MPP as the chosen reference point, the accuracy of first-order HDMR 

approximation in Eq. (10) may depend on the orientation of the first 1r  axes.  In the present 

work, the orientation is defined by the matrix R .  In Eq. (10), the terms 
* * * *

1 1 1( , , , , , , )  i i i rg v v v v v  are the individual component functions and are independent of each 

other.  Eq. (10) can be rewritten as,  

    *

1

,


 
r

i

i

i

g a g vv v , (11) 

where *( 1) ( )  a r g v . 

(iii) New intermediate variables are defined as 

  *, i

i iy g v v . (12) 

The purpose of these new variables is to transform the approximate function into the following 

form  

   1 2      rg a y y yv . (13) 

(iv) Due to rotational transformation in v-space, component functions iy  in Eq. (13) are expected to 

be linear or weakly nonlinear function of random variables iv .  In this work both linear and 

quadratic approximations of iy  are considered.  Let  i i i iy b c v  and 2  i i i i i iy b c v e v  be the 

linear and quadratic approximations, where coefficients ib , ic  and ie  (non-zero) 

are obtained by least-squares approximation from exact or numerically simulated conditional 

responses       1 * 2 * *, , , , , ,
T

i i n i

i i ig v g v g vv v v  at n sample points along the variable axis vi.  

Then Eq. (13) results in  

    1 2

1

        
r

r i i i

i

g a y y y a b c vv , (14) 

and 

    2

1 2

1

         
r

r i i i i i

i

g a y y y a b c v e vv . (15) 

The least-squares approximation is chosen over interpolation, because the former minimizes the 

error when n > 2 for linear and n > 3 for quadratic approximations. 



(v) Since 
iv  follows standard Gaussian distribution, marginal density of the intermediate variables 

iy  can be easily obtained by simple transformation (using chain rule).   

    
1

i iY i V i

i i

p y p v
dy dv

 . (16) 

(vi) Now the approximation is a linear combination of the intermediate variables 
iy .  Therefore, the 

joint density of  g v , which is the convolution of the individual marginal density of the 

intervening variables 
iy , can be expressed as follows:  

        
1 21 2     

rY Y Y rG
p g p y p y p y , (17) 

where   
G

p g  represents joint density of the transformed limit state function  g v . 

(vii) Applying FFT on both sides of Eq. (17), leads to 

        
1 21 2

                
rY Y Y rG

FFT p g FFT p y FFT p y FFT p y . (18) 

(viii) By applying inverse FFT on both side of Eq. (18), joint density of the limit state function ( )g v  is 

obtained. 

(ix) The probability of failure is given by the following equation 

  
0

HDMR



    
F G

P p g dg . (19) 

After computing the probability of failure HDMR

FP  using coupled HDMR-FFT technique, the 

corresponding reliability index HDMR  can be obtained by 

  1 HDMR

HDMR

   FP , (20) 

where     is the cumulative distribution function of a standard Gaussian random variable.   

3.2 Reliability Index and MPP Update Procedure  

As expected it is very likely that the HDMR  (computed using Eq. (20)) is not the same as the target 

reliability index 1 Tar( )  t FP , and hence, using the difference between these two reliability indices, 

a recursive formula is obtained as 

 
     1

HDMR


    

k k

t , (21) 

where 
 


k

 is the reliability index at the current step, with 
 0
 t  at the initial step. 

The updated MPP is approximated as  

 
 

 

 

 

1 1
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k k

k k k kk k
u u v v , (22) 

The updated MPP obtained through Eq. (22) is called the coupled HDMR-FFT based MPP, denoted by 
*

HDMRu  in U -space or *

HDMRx  in X -space.   



3.3 Detailed Algorithm of Proposed Computational Procedure  

The various steps involved in the proposed computational procedure for inverse reliability problems 

with implicit response functions in the presence of mixed uncertain variables are as follows: 

(i) Find MPP in the rotated Gaussian space using a given reliability index  


k
. 

(ii) Calculate the probability of failure HDMR

FP  and the corresponding reliability index 
HDMR  using 

coupled HDMR-FFT technique. 

(iii) Using Eq. (21) and Eq. (22) respectively, update the reliability index from  


k
 to  1


k

 and 

MPP from *

ku  ( *

kv )  to *

1ku  ( *

1kv ). 

(iv) Find a new coupled HDMR-FFT based MPP *

HDMRx . 

(v) Compare *

HDMRx  and *
x . 

(vi) Repeat Steps 1–5 until converged. 

(vii) Using the minimum and maximum values of the fuzzy variables part at each  -cut, the bounds 

of the design variables can be obtained by adopting the above procedure.  

4. Numerical Examples   

To obtain  the approximation of the HDMR component functions of fuzzy variables part of the 

nonlinear limit state function in Eq. (12), n  sample points iLx ,     3 1   iM iM iLx n x x n , 

    5 1   iM iM iLx n x x n , …, iMx , …,     5 1   iM iU iMx n x x n , 

    3 1   iM iU iMx n x x n , iUx  are deployed along axis of each of the fuzzy variable ix  having 

triangular membership function with the triplet number [ , , ]iL iM iUx x x .  Similarly to obtain 

linear/quadratic approximation of the HDMR component functions of random variables part of the 

nonlinear limit state function in Eq. (12), n  sample points  1 2  i in ,  3 2  i in , …, i , 

…,  3 2  i in ,  1 2  i in  are deployed along axis of each of the random variable ix  with 

mean i  and standard deviation  i .  If N and n  respectively denote  the number of uncertain 

variables,  the number of sample points taken along each of the variable axis, then using first-order 

HDMR approximation the total cost of original function evaluation entails a maximum of 

 1 1  N n  by the proposed method.  The efficiency and robustness of the proposed method is 

expected to increase with increase in the complexity of the structure, number of uncertain variables. 

4.1 Hypothetical Limit State Function  

This example considers a four dimensional quadratic function of the following form: 

 2 2 2 2

1 2 3 4 1 2 3 4( ) 9 11 11 11 95.5         g x x x x x x x xx , (23) 

where 1 3x x  are assumed to be independent normal variables  with (5,0.4)N .  The variable 4x  is 

assumed as fuzzy represented by the triplet [4.6,  5.0,  5.4] .  The objective is to find the membership 



functions of * *

1 3x x  values, such that the target reliability index 1.645 t
 (which corresponds to a 

failure probability 0.05FP ) is achieved.  The presence of mixed uncertain (both random and fuzzy) 

variables, leads to the membership function of MPP ( * *

1 3x x ) instead of having a unique value at the 

target reliability index.  Figs. 1(a) 1(c) respectively show the membership functions of * *

1 3x x  values 

at the target reliability index estimated by the proposed method using linear and quadratic 

approximations.  The effect of number of sample points is studied by varying n  from 3 to 9.  In Figs. 

1(a)1(c)  it can be observed that the membership functions of * *

1 3x x  values estimated by the 

proposed method using 7n  and 9 are overlapping each other. 

 

 

 

 

Figure 1: Membership function of design variables (a) 
*

1x ; (b) 
*

2x ; and (c) 
*

3x  

4.2 Single Story Linear Frame Structure  

In this example a linear frame structure of one story and one bay as shown in Fig. 2(a) is considered.  

The cross sectional areas 1A  and 2A  are assumed to be log-normally distributed random variables with 

mean values of 0.36 and 0.18, and standard deviation values of 0.036 and 0.018 respectively.  The 

horizontal load P  is treated as fuzzy with a triplet of [15,  20,  25] .  The sectional moments of inertia 

are expressed as 2 i i iI A  ( 1,2i ; 1 0.08333  , 2 0.16670  ).  The Young’s modulus E  is 

treated as deterministic. 6 22.0 10  kN/m E .  In this study, the functional relationship to define the 

horizontal displacement at the top of the frame is: 

  1 2 lim, ,    hg A A P u , (24) 

where lim  is taken as 10 mm.  Our interest is to find *

1A  and *

2A , such that the target reliability index 

2.831 t  (which corresponds to a failure probability 32.32 10 FP ) is achieved. 

The implicit limit state function given in Eq. (24) is approximated using first-order HDMR by 

deploying n  sample points along each of the variable axis.  The approximated limit state function is 

divided into two parts, one with only the random variables along with the value of the constant part, 

and the other with the fuzzy variables.  The joint membership function of the fuzzy part of 

approximated limit state function is obtained using suitable transformation of the fuzzy variables. 

Using the proposed inverse reliability method in conjunction with linear and quadratic approximations, 

the membership functions of *

1A  and *

2A  values at the target reliability index are obtained, and shown in 

Figs. 2(b) and 2(c).   The effect of number of sample points is studied by varying n from 3 to 9 and 

observed that the membership functions of *

1A  and *

2A  values estimated by the proposed method using 

7n  and 9 are overlapping each other.  

 



 

 

 

 

 

 

Figure 2: (a) Single story linear frame; (b) *

1A ; and (c) *

2A  

5. Summary and Conclusions   

An efficient, accurate, robust solution procedure alternative to existing inverse reliability methods is 

proposed for nonlinear problems with implicit response functions, that can be used to determine 

multiple unknown design parameters such that prescribed reliability indices are attained in the presence 

of mixed uncertain (both random and fuzzy) variables.  The proposed method avoids the requirement of 

the derivatives of the response functions with respect to the uncertain variables.  The proposed 

computational procedure involves three steps: (i) probability of failure calculation using High 

Dimensional Model Representation (HDMR) for the limit state function approximation, transformation 

technique to obtain the contribution of the fuzzy variables to the convolution integral, and fast Fourier 

transform for solving the convolution integral, (ii) reliability index update, and (iii) most probable point 

(MPP) update.  The limit state function approximation is obtained by linear and quadratic 

approximations of the first-order HDMR component functions at MPP.  The methodology developed is 

versatile, hence can be applied to highly nonlinear or multi-parameter problems applicable involving 

any number of fuzzy variables and random variables with any kind of distribution.  The accuracy and 

efficiency of the proposed method is demonstrated through six numerical examples.   

In addition, a parametric study is conducted with respect to the number of sample points used in 

approximation of HDMR component functions and its effect on the estimated solution is investigated.  

An optimum number of sample points must be chosen in approximating HDMR component functions.  

Very small number of sample points should be avoided as approximation may not capture the 

nonlinearity outside the domain of sample points and thereby affecting the estimated solution.   
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