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Abstract 

Pavement construction is a very energy intensive process, and it results in a significant usage of water, 

and emission of chemicals in the environment. Maintenance and rehabilitation of pavements also utilize a 

significant amount of energy, time and natural resources such as aggregate. Therefore, ensuring the 

durability and good performance of a pavement through proper structural design is a step towards making 

sustainable pavements. Structural design of pavements has evolved significantly over the years, from 

purely empirical to mechanistic-empirical, although, in most countries around the world, the empirical 

design process is followed for the design of asphalt pavements, which constitute the majority of roads in 

most countries. This is because of the inherent complexities, uncertainties and lack of single unified 

theories in the case of pavements. Furthermore, because of the variations in climate and types of 

aggregate and asphalt binder, and possibly type of traffic, across the globe and across large countries, and 

the dependence of pavement behavior on the climatic conditions, it is not possible to use any specific 

model for all countries or an entire country. But there is no doubt that a rational structural design 

procedure is needed in every country to ensure that the design with the optimum combination of 

performance and impact on the environment is selected. This paper presents the cost and environmental 

implications of different structural designs, and explores the concept of structural design for sustainable 

pavements with an example. It is shown that similar design life could be achieved by utilizing different 

combinations of base/binder and surface courses of a pavement, and the use of composite pavement, with 

Portland cement concrete and asphalt pavement layers could very well be the most optimum solution in 

reducing the impact of pavement construction and maintenance on the environment. 
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Introduction 

The development and proper functioning of a nation depends to a great extent on her road infrastructure. 

Safe, durable and smooth pavements are the lifelines of a society. However, during the construction and 

maintenance of roadway pavements man-made material (or processed natural material) is laid down to 

cover virgin (most likely arable) ground (making it un-arable from that point onwards), a significant 

amount of natural resources is utilized, (nonrenewable) energy is consumed, landfills are created, and 

different types of chemicals (in the form of gases) are emitted to the environment (all of these processes 

are irreversible). Thus, there is a significant environmental impact of pavement construction and 

maintenance activities on our environment. 

 

The selection of the right type of pavement for a specific project is made primarily on the basis of cost – 

either initial only or on a life cycle cost basis. Although recycling of pavements has become more and 

more routine over the years, a comprehensive consideration of different impacts on the environmental and 



the selection of the alternative with the least environmental impact, has not started in pavement design on 

a regular basis. Of course, such selection has to be made in conjunction with considerations of cost also. 

 

Pavements can be broadly classified into asphalt (or flexible) and concrete (or rigid) pavements 

Pavements consist of different layers, more so in the case of asphalt pavements than concrete ones. From 

the bottom up, these layers are known as the subgrade, subbase, base, and binder and/or surface. There are 

certain pavements with asphalt surface layers on top of concrete layers. The purpose of a pavement is to 

ensure that the load is spread out below the tire, such that the resultant stress in the existing soil (which 

could be stabilized), the subgrade, is low enough so as not to cause damage, in the form of excessive 

deformation. 

 

Generally several layers are present in an asphalt pavement. From the bottom up, the layers are known as 

the subgrade, subbase, base, and binder and/or surface. Generally, the bottom most layer is soil; the 

subbase and/or base layers can be granular soil, or aggregates or asphalt-aggregate mixtures (mixes); and 

the binder and surface are asphalt mixes. While designing, adequate thickness to each layer is assigned, so 

as to obtain the desirable properties in the most cost-effective way. Concrete pavement may not have as 

many layers, and in many cases the concrete slab rests on a stabilized subgrade, which consists of soils 

modified with some additives. 

 

Although all pavements consist of different types of layers and hence can be called composite, generally 

the term refers to those pavements, which consist of asphalt mix layer on top of a concrete pavement or a 

concrete layer on top of another concrete pavement. The concrete part could be Portland cement concrete 

(PCC), Continuously Reinforced Concrete Pavement (CRCP), Jointed Reinforced Concrete Pavement 

(JRCP) or roller compacted concrete. For concrete over concrete pavements, generally the lower layers 

consist of locally available aggregates or recycled concrete while the upper layer (which could be a 

porous concrete layer) contains high quality smaller size aggregates.  

 

Objective 

The objective of this paper is to present the cost and environmental implications of different structural 

designs of asphalt pavements, and explore the feasibility of structural design for sustainable pavements 

with examples. 

 

Pavement Layers 

Structural design of a pavement is conducted to determine the thickness of the different layers to prevent 

the occurrence of problems or distresses in the pavement due to traffic loading and the environment. Such 

distresses may include rutting or depressions in the wheel path and cracking. In an asphalt pavement the 

surface layer usually consists of the ―best‖ and most costly materials. Also, this layer is always 

―bound‖—that is, mixed with a ―binder,‖ in this case asphalt binder—to prevent raveling of materials 

under traffic, as well as to provide a dense surface to prevent ingress of water, unless it is an open graded 

friction course. Therefore, the surface layer has two major components—asphalt binder and aggregates, 

with relatively small amounts of additive, if any. The mixture of this layer needs to be designed properly 

to give it adequate stiffness, strength, and durability. This mix is usually prepared by combining hot 

aggregates and asphalt binder (hot mix asphalt, or HMA).The next layer could be either binder or base. 

Generally, the binder layer is almost similar to the surface layer, except that it may consist of aggregates 

of larger size. The base may be made up of a bound layer or an unbound aggregate layer. The base layer 

has to be sufficiently strong in shear as well as bearing capacity, but need not be as good as the binder and 

surface course, since the stresses at this level are much lower. However, the base needs to be stiff enough 

to provide an overall stiffness to the pavement structure such that it does not deflect too much under load. 



The function of the subbase is almost similar to that of the base, except that it could be of lower quality 

materials, since the stress is even less at this level. Generally, it is made up of aggregates only. The sub-

base layers also serves as a drainage layer. The subgrade is made up of the existing soil or the soil mixed 

with some additives to enhance its properties. It serves as the foundation of the pavement and should be 

of such quality as to resist excessive deflection under load.  

 

The desirable thickness of the layers over the subgrade are determined from the consideration of their 

stiffness/resistance to deformation properties (such as with the use of the test property California Bearing 

Ratio, or CBR), as well as the change in the properties that can be expected due to a change in the 

environmental conditions, primarily moisture and the effect of temperature on moisture. However, note 

that in a pavement structure, the stress in the subgrade or subbase/base is governed by the imposed stress 

(vehicle load) as well as the thickness of the layers above them. Therefore, if the subgrade/subbase or 

base is known to be relatively weak, it should be protected by a proper selection of binder/surface mix 

and layer thickness. On the other hand, if the base could be made stiffer, then a relatively thin surface 

layer would suffice. It follows that the structural design process in pavements is an iterative process that 

balances the availability of materials and the cost of the total pavement structure. 

 

The basic purpose of the structural design process is to combine the different layers in such a way so as to 

result in the most cost-effective functional pavement structure. This can be achieved by primarily two 

different techniques: (1) by using empirical methods—that is, charts and equations developed from 

experimental studies carried out with a set of traffic, environment, and pavements; or (2) by using a 

mechanistic method, in which concepts of mechanics are used to predict responses and performance of 

the pavement. Note that a purely mechanistic approach is not possible at this time—the responses can be 

predicted by employing concepts of mechanics, but the performance has to be predicted by empirical 

models. Hence, it is more appropriate to say that pavements can be designed either by using the empirical 

approach or by using the mechanistic-empirical approach (ME). Structural design of concrete pavements 

is based on the concept of limiting stresses to prevent excessive damage and deterioration of the 

pavements. Distresses are caused by stresses in rigid pavements. These stresses are imposed by traffic 

through wheel loads, temperature and moisture variations (causing warping, and expansion and shrinkage 

stresses), and volume changes in the base and subgrade. 

 

In this paper, analysis and design are presented for asphalt pavements only. 

 

Design criteria  

In most mechanistic-empirical design procedures of design of asphalt pavements, the tensile strain at the 

bottom of the asphalt mix layer and the vertical strain on top of the subgrade are considered as primary 

responses that lead to fatigue cracking and rutting, respectively. The responses are predicted from layered 

elastic models, whereas the deterioration models relating life to responses (number of repetitions to 

failure for a specific strain, for example) are determined from laboratory tests (empirical part) (1, 2, 3, 4). 

Obviously, a suitable structure needs to be designed to prevent both fatigue cracking and rutting, and 

therefore, in many cases, a design that is ultimately adopted for one mode of failure (say, rutting) is over-

conservative for the other (say, fatigue cracking), and hence, the selection of a pavement structure with 

the least cost and least environmental impact becomes complicated. 

 

An alternative to this approach is the consideration of a single response, the deflection at the surface of a 

pavement, that could account for both modes of failure (5, 6). The benefit is that a pavement structure 

could be optimized against a single response and then optimized for the reduction of its cost as well as 

environmental impact. From a practical standpoint, the benefits also include the facts that unlike strains, 



the surface deflection could be measured relatively easily in the field, and hence the structural condition 

of a pavement could be determined easily, and relationships between surface deflection and tensile 

strain/compressive strain could be developed. Considering these advantages, the surface deflection 

approach has been utilized for analysis in this paper. 

 

Standard and Alternative Pavement Structures 

The Indian Road Congress (IRC) (7) provides a catalog of standard pavement structures for different 

combinations of soil stiffness (characterized by the California Bearing Ratio, CBR) and traffic (expressed 

in million standard axles, msa). Although the adoption of a catalog makes the process empirical, in 

essence, the designs have been developed on the basis of mechanistic-empirical procedures, with due 

consideration of temperature and traffic data from different parts of India. 

 

Four standard pavements (from the IRC catalogs) are considered here, for different soil and traffic 

conditions. For each case the standard Indian Road Congress (IRC) specified structure is analyzed and the 

vertical deflection at the surface is determined. These four cases were selected to include low, medium 

and high stiffness soil (CBR of 2, 6 and 10) and low and high traffic volumes (10 and 150 msa). Next, an 

alternative was sought for each case, which would provide significant reduction in materials, which could 

potentially lead to a significant reduction in environmental impacts.  

 

Based on a literature review, the ―inverted pavement‖ concept was selected for utilization in the 

alternative pavement structures. The concept of ―inverted‖ pavements has been used successfully in many 

countries, specifically South Africa, to provide good performing roads with long life. In such pavements, 

an aggregate base layer is provided over a cement treated base (CTB) layer, and the demand for good 

quality crushed aggregate is minimized. The CTB layer provides a strong platform on which the unbound 

aggregate base course materials (commonly referred to as granular base) could be compacted better than 

on a conventional subbase. As a result, the granular base now has a much higher stiffness/structural 

strength (~ 450 Mpa) than its counterpart in a conventional pavement structure (200 -250 MPa). As a 

result of this and the presence of the stiff CTB layer, a relatively thin asphalt mix layer could be utilized 

on the surface. Studies have shown that when the surface course is properly maintained, such pavements 

can last indefinitely (8, 9, 10, 11, 12). However, the question is, can the benefit of such pavements be 

translated into environmental benefits as well? 

 

A comprehensive evaluation of the changes in environmental factors (as well as cost) was conducted with 

the standard and their corresponding alternative structures. Each alternative structure was designed so as 

to provide a surface deflection that is identical to that of a standard pavement structure. The analysis was 

carried out with a layered elastic analysis software (WinJulea). The standard and the alternative designs, 

as well as the surface deflections are shown in Table 1. Note that in this analysis, an increased modulus of 

the granular base is not considered. The justification is as follows – over time, because of ingress of 

water, the modulus of the CTB could decrease, and as a result, the increased stress on the granular base 

(that provides the higher modulus) will also decrease. Therefore, to be on the conservative side, a 

modulus 250 Mpa is considered – it could be on the lower side initially, but in the long term it is probably 

more appropriate. Deterioration of cement treated base materials have been identified and demented in 

Reference 13.   

 
It can be seen that the use of cement treated base can significantly reduce the thickness of the other layers. 

However, the initial cost could increase, because of the use of cement, as shown in Figure 1. The 

increases are in the range of 3-5%. 

 



Table 1. Standard and alternative IRC structures;Standard-1; CBR = 2; Cumulative standard axle = 10 msa 

Layer Material Layer Thickness, mm Modulus, E, MPa Surface deflection ( mm) 

Bituminous concrete, BC 1 40 1695 0.46 

Bituminous Macadam, BM 2 100 700  

Granular Base, GB 3 250 250  

Granular Subbase, GSB 4 460 100  

Subgrade, SUB   0    

Alternative Standard 1;  

BC 1 50 1695 0.46 

GB 2 150 450  

Cement Treated Base, CTB 3 175 1200  

SUB   0    

Standard 2; CBR = 2; Cumulative standard axle = 150 msa 

BC 1 50 1695 0.31 

Dense Bituminous Macadam (DBM) 2 215 1695  

GB 3 250 250  

GSB 4 460 100  

SUB   0    

Alternative Standard 2;  

BC 1 87.5 1695 0.32 

GB 3 200 450  

CTB 4 300 1200  

SUB   0    

Standard 3; CBR = 6; Cumulative standard axle = 150 msa 

BC 1 50 1695 0.26 

DBM 2 160 1695  

GB 3 250 250  

GSB 4 260 100  

SUB   0    

Alternative Standard 3;  

BC 1 62.5 1695 0.25 

GB 2 200 450  

CTB 3 300 1200  

SUB   0    

Standard 4; CBR = 10; Cumulative standard axle = 150 msa 

BC 1 50 1695 0.24 

DBM 2 150 1695  

GB 3 250 250  

GSB 4 200 100  

SUB   0    

 

 

 



Table 1. Standard and alternative IRC structures (continued)  
Alternative Standard 4;  

BC 1 50 1695 0.23 

GB 2 150 450  

CTB 3 300 1200  

SUB   0    

 

 
Figure 1. Cost comparisons 

 

Environmental Impact 

Next, the four sets were analyzed for their respective environmental impacts with the help of PaLATE 

software. PaLATE (Pavement Life-cycle Assessment Tool for Environmental and Economic Effects) (14) 

is a worksheet-based software that allows the user to evaluate the environmental and economic impacts of 

different designs. The primary input elements are materials and equipment (for transportation and 

processing/construction), and the outputs are environmental impacts (energy, water and emissions). 

Default values for different inputs are provided in the software, but the user can replace these also. 

PaLATE derives its parameters for analysis from a host of references, such as 15. These references are 

listed in the PaLate software. 

 

The PaLATE program performs all calculations using volumetric methods. For every one of the eight 

alternatives, the input values used in PaLATE were based on a 100 cu. yd. (76 cu m) top layer batch. The 

batch sizes for the lower layers were adjusted based on the thickness of the road. For example, given an 

alternative with a 50 mm top layer of BC and a 100 mm second layer of granular base, values were 

entered into PaLATE for a 100 cu. yd. (76 cu m) batch of BC and a 200 cu. yd. (152 cu m) batch of 

GB. Using this method, PaLATE could evaluate the environmental impact for a correctly proportioned 

area of road. Unfortunately, the  output is then based on a set volume. Because the layers of the different 

alternatives vary in thickness, the unaltered PaLATE environmental impact is not an accurate reflection of 

the true environmental impact of each alternative. To utilize the tool effectively, the thicknesses of the 

layers were used to calculate the area of roadway that each of the 8 alternatives would build. Using these 

areas, the PaLATE outputs were converted into environmental impacts per 1,000 m2 of roadway. Note 

that the same environmental impact could possibly result from two different structures. Specifically, 

PaLATE is probably not refined enough to show the effect of the varying base layer thicknesses in its 



results and the effect of the asphalt layer overshadows the effects of the other layers. The comparisons of 

environmental impacts are shown in Table 2. 

Table 2. Environmental impacts (per 1,000 m
2
 of roadway) 

C

A 

S

E  

Energy 

[MJ] 

Water 

Consu

mption 

[kg] 

CO2 

[Mg] 

= 

GWP 

NOx 

[kg] 

PM10 

[kg] 

SO2 

[kg] 

CO 

[kg] 

Hg 

[g] 

Pb 

[g] 

RCRA 

Hazardo

us Waste 

Generate

d [kg] 

Human 

Toxicity 

Potential 

(Cancer) 

Kg 

benzene 

air 

equivale

nt 

Human 

Toxicity 

Potential 

(Non-cancer) 

Kg toluene air 

equivalent 

 1 259,508 70 13 98 69 3829 41 0.3 13 2695 46224 71,742,449 

 1

, 

al

t 92,683 25 4 35 25 1367 14 0.1 4 962 16509 25,623,682 

 2 491,096 133 24 185 130 7247 78 0.5 25 5101 87479 135,758,373 

2, 

al

t 162,196 43 8 61 43 2393 25 0.2 8 1684 28890 4,4841,298 

3 389,050 105 19 146 103 5744 62 0.4 20 4040 69278 107,618,797 

3, 

al

t 115,854 31 5 43 31 1709 18 0.1 6 1203 20636 32,029,551 

4 370,195 100 18 139 98 5471 58 0.4 19 3841 65887 102,502,476 

4, 

al

t 92,683 25 4 35 25 1367 14 0.1 4 962 16509 25,623,682 

 

 

Figures 2 through 4 show the environmental impacts of the different structures for energy and 

water consumption, emissions and for hazardous waste and toxicity potential. Of the emissions, 

two gases are selected – CO2 and NOx on the basis of their importance on greenhouse gas effect 

as well as health effects. Figure 4 includes hazardous waste, and the toxicity that is cancerous. 



A comparison of the costs and the environmental impacts show that because of the use of less 

amount of stiffer materials, there is a slight increase in cost in three out of four cases (4% 

increase) – however, the reductions in environmental impacts are very high in comparison, 

ranging from 64 to 75 % approximately. It is apparent that the selection of a stiffer base layer can 

significantly reduce the total thickness of asphalt layer that needs to be utilized, and hence the 

harmful effects of using asphalt are significantly lowered. The reader’s attention is drawn 

particularly to two aspects – the reduction in the CO2 generation and the human toxicity (cancer) 

potential. While the CO2 generation is directly related to global warming (and its harmful 

consequences), the toxicity part alone is very significant in terms of global health. This fact 

should be viewed in conjunction of the fact that millions of workers are exposed to fumes that 

are produced during the construction of roadways in the world, and hence the impact is 

significant. It must also be stated that while eye and upper respiratory irritation have been 

reportedly reported by workers who are exposed to asphalt fumes (16), significant differences 

have been found between fumes that are generated in laboratory studies (on which the numbers 

are based) and those that are produced in actual field conditions, and also carcinogenic materials 

have not been detected in asphalt fumes collected from field in one study (17). However, it is 

advisable to keep prevent dermal exposure to asphalt fumes and use appropriate respiratory 

protection (16). 

 

In the cases illustrated in this paper, it is seen that an alternative design with CTB can provide 

response (and hence performance) that is as good as that of a conventional structure, and at the 

same time does not cost significantly more. These facts, along with the reduced need for natural 

materials, make this design a suitable one for achieving sustainability in pavement design and 

construction. Cost comparison of such pavements must be made on a life cycle basis. One 

important thing to note is that by providing a stronger base, in a CTB pavement, the distresses 

are limited to the surface layers. Such distresses are relatively easy and less costly to address – 

therefore maintenance would be less costly for the alternative structures, and hence the life cycle 

cost is most likely lower than conventional pavements (11). In this analysis, the effects of 

maintenance have been considered to be the same for all of the pavements – in reality, because 

the maintenance of the alternative structures would be limited to those of the surface layers only, 

the environmental impact would most likely be even lower than that shown here. Although it is 

debatable whether an agency would want to bear the initial extra cost, if any, or whether the 

materials that are required for the alternative designs are available or not, a comparison of the 

benefits versus extra cost is most likely convincing enough for designers to realize that a change 

in the approach of design of pavement structure is needed in order to address, at least, the very 

obvious negative impacts on the environment – use of energy and water. 

 

Conclusions and Recommendations 

An exploration of alternative designs for four specific pavement cases have been presented in 

this paper in order to illustrate the importance of consideration of environmental factors. It is 

shown that technology exists to provide equivalent designs and at the same time reduce the 

harmful effects of pavement construction and maintenance significantly. The results of analysis 

and design show that the use of composite pavements with cement treated base can significantly 

reduce the thickness of asphalt mix layer that is needed, and that this leads to a significant 



reduction of the quantity of asphalt binder that is needed, and hence the environmental impacts 

of the use of asphalt, especially in terms of energy-water use, emissions and human toxicity 

potential. It is recommended that the use of such environmental impact be made routine during 

the design of structural design of pavements, through its introduction in regulatory 

body/government publications on pavement design, and that alternative designs such as those 

mentioned here be evaluated with field projects. 

 

 

 

Figure 2. Comparison of environmental effects: energy and water (basis of 1,000 m3);  

Note: 1 – Standard 1; 1, alt – Alternative 1 (structure) 

 



 

 

Figure 3. Comparison of environmental effects: CO2 and NOx (basis of 1,000 m3)  

Note: 1 – Standard 1; 1, alt – Alternative 1 (structure) 

 

 

 

 

 



 

 

 

Figure 4. Comparison of environmental effects: hazardous waste and human toxicity potential (basis of 

1,000 m3) 

Note: 1 – Standard 1; 1, alt – Alternative 1 (structure) 
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