

UNIVERSITY OF MORATUWA

MORATUWA

ENDERIES & MONT

MARCH 1994

64338

ABSTRACT

In Sri Lanka the waste water discharged from most Textile Processing Factories to water bodies are found to be poorly treated or untreated. This may be due to reasons such as involvement of high capital and operation costs for treatment facilities, difficulties encountered in maintenance of mechanical and electrical equipments and the unawareness about the necessity of treatment of waste water. The non availability of literature regarding textile waste treatment may also be a reason for it. As such studies on treatment methods of textile waste water are very important.

In this report the author explains available literature on characteristics of textile waste water and its treatment methods and measurements related to waste water.

Laboratory studies were carried out for the removal of colour and C.O.D. from textile waste water.

Regarding the removal of colour several experimental methods were carried out based on the principle of coagulation and flocculation. In Forsi colour adsorption and powdered activated carbon and commercially available polyelectrolytes were used. The conventional sand test test mais memployed in these experiments. WWW.lib.mrt.ac.lk

Conventional activated sludge process was used in the removal of C.O.D. This was carried out by varying the influent C.O.D. values. A basic Laboratory scale activated sludge plant model complete with aeration tank, settling tank and other essential components was used for this purpose.

By adding powdered activated carbon to the waste water and carrying out flocculation and coagulation with alum, 100% removal of colour was achieved at certain dosages. Similarly removal of colour can be achieved by using polyelectrolytes also. Powdered activated carbon requirement varies from 100 mg. to 1000 mg. for 1 litre of waste water.

More than 80% of available C.O.D. could be removed by adopting conventional activated sludge treatment method with proper controls.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the support given by the University of Moratuwa and staff specially Professor D.C.H. Senarath, Dean of the Faculty of the Engineering, Professor L.L. Ratnayake, Head of the Department of the Civil Engineering and Dr. S.S.L. Hettiarachchi course coordinator.

The author wishes to express his sincere thanks to the Project Supervisor Mrs. N. Ratnayake, Senior Lecturer of Civil Engineering, University of Moratuwa for the continuous advice and guidance rendered throughout the project.

The assistance given by the Environmental Laboratory Staff Mr. L.J.De Silva and Mrs. N. Gunatillake, in the experimental work and Kabool Lanka (Pvt) Ltd., and NALCO Ltd. by providing samples for the study is appreciated.

Electronic Theses & Dissertations

Finally the author wishesk to express his thanks to the National Water Supply & Drainage Board for providing part of the financial requirement for this study.

TABLE OF CONTENTS

	Description	Page
	ABSTRACT	I
	ACKNOWLEDGEMENTS	II
	TABLE OF CONTENTS	III
	LIST OF FIGURES	v
	LIST OF TABLES	VI
	ABBREVIATIONS	VIII
1.	INTRODUCTION	1
	1.1. General Introduction and Scope of the Study	1
	1.2. Textile Manufacturing Process	2
	1.3. Waste Water Characteristics	7
	1.4. Dyes University of Moratuwa, Sri Lanka.	11
	1.5. Waste WaterwIreatment Ik	15
2.	THEORETICAL CONSIDERATIONS AND REVIEW OF	22
	2.1. Adsorption - Theory and Design Considerations	22
·	2.2. Economy of PAC Use	33
	2.3. Theory of Coagulation and Flocculation	37
	2.4. Jar Test	40
	2.5. Use of Polyelectrolytes for Textile Waste Treatment	41
	2.6. Biological Treatment	44

.

•

*

m

4

4

· · · · ·

3.	EXPERIMENTAL PROCEDURES	53
	3.1. Jar Test	53
	3.2. Measurement of Colour of the Waste Water Using Spectrophotometric Method	55
	3.3. Activated Sludge Treatment Model	61
	3.4. Suspended Solids by Filtration	63
	3.5. Chemical Oxygen Demand	64
4.	EXPERIMENTAL RESULTS	66
	4.1. Results of Tests carried out with Alum as Coagulant	66
	4.2. Results of Tests carried out Using Powdered Activated Carbon and Alum	68
	4.3. Resultes Tests carried out Using Activiated Carbon and Alum Seperately	71
	4.4. Results of Test Carried out with Powdered	
	Activated Carbon Only University of Moratuwa, Sri Lanka.	74
	4.5. Results of Jar Tests carried out with Potyelectrolytes Theses & Dissertations www.lib.mrt.ac.lk	75
	4.6. Results of Jar Tests carried out using Polyelectrolytes and Powdered Activated Carbon	86
	4.7. Results of Jar Test Using Powdered Activated Carbon and Alum at Elevated Temperature	d 93
	4.8. Results of Tests carried out on the Activated Sludge Treatment Model	95
5.	ANALYSIS AND DISCUSSION OF RESULTS	97
	5.1. Analysis of Results 5.2. Discussion of Results	97 105
6.	CONCLUSIONS AND RECOMMENDATION FOR FURTHER STUDIES 6.1. Conclusion 6.2. Recommendations for Further Studies	112 112 113
	APPENDIX 1 - Literature of Polyelectrolytes used APPENDIX II- Results of Tests Carried out by Abeydheera and Amarasena (1992)	114 116
	REFERENCES	112
	1 ¥	

LIST OF FIGURES

Figure	Description	Page
1.1.1.	Flow Diagram of an Integrated Cotton Textile Mill	4
1.1.2.	Flow Diagram for Woolen Textile Manufacturing	5
1.1.3.	Flow Diagram of Rayon Textile Manufacturing	6
1.5.1.	Flow Diagram for Treatment of Cotton Textile Mill Waste	20
1.5.2.	Flow Diagram for Treatment of Woolen Textile Mill Waste	21 ·
2.3.1.	Graphical Representation of Coagulation	37
2.6.1.	Types of Package Aeration Plants	48
2.6.2.	Package Plant (two Compartments)	49
2.6.3.	Package Plant (three Compartments)	50
3.1.1.	Apparatus for Par Test for Determining OptimumEcoatgonianThDosage Dissertations	54
3.2.1.	Filtration System for Colour Determinations	56
3.2.2.	Chromaticity Diagrams	57
3.3.1.	Activated Sludge Treatment Plant Model	62
.5 .1.1.	The Graph Showing the Relationship between Percentage Removal of Colour in Waste Water with Activated Carbon Dosage	101
5.1.2.	The Graph Showing the Relationship between Percentage Removal of Colour in Waste Water with Activated Carbon Dosage for Various Initial Transmittance Values	102
5.1.3.	The Graph Showing the Relationship between Percentage Removal of Colour in Waste Water with 0.5% Alum Dosage	103
5.1.4.	The Graph Showing the Relationship of Influe and Effluent C.O.D. Value with Time for Activated Sludge Model Study	ent 104

×

V

LIST OF TABLES

P

۲

۳Í

٨

A

٠

٠

ð

Table No.	Description	Page
1.3.1.	Polluting Loads from Various Preliminary Treatments of Cotton Manufacturing	7
1.3.2.	Polluting Loads from Textile Finishing	8
1.3.3.	Dyes and Wastes in Textile Finishing	9
2.2.1.	PAC Requirement as a Function of System Size and Dosage	33
2.2.2.	Daily Cost Estimate for Purchase of PAC	34
2.2.3.	Annual Cost Estimate of PAC Feeding Equipment	35
2.2.4.	Total Cost Estimate for PAC Treatment	36
3.5.1.	Selected Ordinates for Spectrophotometric Colour Determinations Moratuwa, Sri Lanka.	59
3.5.2.	Colour Hues for Dominant Wavelength Ranges	60
4.1.	Experimental Results of Tests , carried out using Alum	66
4.2.	Experimental Results of Tests carried out using PAC and Alum	68
4.3.	Experimental Results of Tests carried out Using PAC only	71
4.4.	Results of Tests Carried out with PAC only	74
4.5.	Experimental Results of Jar Tests carried out with Polyelectrolytes	75
4.6.	Experimental Results of Jar Tests carried out using Polyelectrolytes	86
4.7.	Experimental Results of Jar Tests using	03

4.8.	Experimental Results of Tests carried out on the Activated Sludge Treatment Model	95
5.1.1.	Percentage Colour Removal for Various Alum and PAC Dosages	98
5.1.2.	Percentage Colour Removal for Various Poly-electrolyte and PAC Dosages	99
5.1.3.	Percentage Removal of C.O.D. by the Activated Sludge Process	99

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

VII

ABBREVIATIONS

ø.

۲

¥

¥

7

۲

ŕ

¥

Y

ł

.

)

Α	· · · ·	Absorbance
BOD	-	o Biochemical Oxygen Demand (5d at 20 C)
С	-	Centigrade
COD	-	Chemical Oxygen Demand
cm	-	Centimetre
Co	.–	Cobalt
Cu	-	Cubic
d	-	day
F	· -	Food
g	-	grams
GAC		Uffrenular Activated Carbonka.
h		Electronic Theses & Dissertations
Kg		WWW.11b.mrt.ac.lk Kilogram
1	-	litre ,
М	-	Micro-organisms
MLSS	-	Mixed Liquor Suspended Solids
MLVSS	-	Mixed Liquor Volatile Suspended Solids
М	-	Metre
mg	-	Milligram
Min	· –	Minutes
mm	-	Millimetre
N	-	Normality
NTU	-	Nephelometric Turbidity Units
nm	-	namometres
PAC	-	Powdered Activated Carbon

VIII

Pt		Platinum
ppm	_	Parts Per Million
Rev	-	Revolutions
SS	-	Suspended Solids
S	-	Seconds
т	-	Transmittance

7

٦

3

*

۲

) +

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

IX