LB/00N/06/09

13 DC3 05/05

DISTRIBUTED MANAGEMENT SYSTEM FOR UNMANAGED UPS

by

Malinda Punchimudiyanse

058271

LIBRARY UNIVERSITY OF MCRATUWA, SRI LANKA MORATUWA

This dissertation was submitted to the

Department of Computer Science and Engineering of the University of Moratuwa

in partial fulfillment of the requirements for the Degree of

Master of Science specializing in Computer Networks

Department of Computer Science and Engineering

University of Moratuwa - Sri Lanka

March 2007

92281 004 "07"

92281

DECLARATION

Malinda Punchimudiyanse No : 205, Mandawila, Angoda Sri Lanka

The University of Moratuwa Sri Lanka, Katubedda, Moratuwa Sri Lanka

Dear Sir / Madam

In accordance with the requirements of the Degree of Master of Computer Science in Specialization of Computer Networks, I wish to present the following thesis entitled "Distributed Management System for Unmanaged UPS" to fulfill my Master's research project. This work was performed under the supervision of Mrs. Vishaka Nanayakkara (Head of Department of Computer Science and Engineering, University of Moratuwa).

I declare that the work submitted in this thesis is my own, except as acknowledged in the Text and footnotes, and has not been previously submitted in part or as whole to any other university or institution.

Yours sincerely,

Majinda Punchimudiyanse 058271

Certification of Research Supervisor

I hereby certify the work presented in the dissertation is a work carried out by Malinda Punchimudiyanse under my supervision.

UOM Verified Signature

Mrs. Vishaka Nanayakkara Research Supervisor

27/03/07 Date

ABSTRACT

DISTRIBUTED MANAGEMENT SYSTEM FOR UNMANAGED UPS

by Malinda Punchimudiyanse Supervisor : Mrs. Vishaka Nanayakkara, Department of Computer Science and Engineering - University of Moratuwa

Information and communication networks have transformed the world to a global village. A typical distributed local area network often consists of one or more network distribution cabinets powered by uninterrupted power supplies of various capacities ranging from 400VA to 2 KVA. Maintaining high availability at correct time is the key issue faced by technical personnel involved in network maintenance today.

The research project "Distributed Management System for Unmanaged UPS" is intended to provide effective monitoring of environment and timely notifications of status or interruptions to background services such as electricity and temperature control of the distributed network locations by a remote unit installed in each remote location. The status of the remote location is sent back to a central software module through Ethernet network then to appropriate technical personnel for necessary actions.

The research project utilizes embedded electronic device and sensors with some custom programmed or pre programmed intelligence to monitor and control equipment at the remote network locations. An embedded device named TINI "Tini InterNet Interfaces" [1], [8] is used in order to monitor the status of UPS using smart/ non smart serial protocol of the UPS via its serial port to measure the electrical stability of remote location, and uses a temperature sensor to get feedback on temperature status of the remote location. Immediate evasive actions also triggered automatically in temperature increases without intervention from technical personnel.

A central software module with real time status monitor is used to integrate status logging and alerting on behalf of remote units. SMS and Intercom alerts are used as alerting mechanisms with specified / customized thresholds, messages suiting to each remote network location and alerted only to personal intended to attend to specific location.

TABLE OF CONTENTS

Chapter 1 - Introduction	1
1.1 Background & Motivation	
1.2 Definition of Problem & Scope of Project	2
1.3 The Aim of Project	4
1.4 Objectives	
1.5 Organization of Literature Review	
1.6 Layout of Thesis	
Chapter 2 - Proposed System Design With Theoretical & Technological	
Background	7
2.1 Feasibility Analysis	7
2.2 Functional Requirements of System	
2.3 Proposed Design of the System	10
2.4 Central Unit	
2.5 Proposed Integration Mechanism of Remote unit and Central unit	
Chapter 3 – System Implementation	
3.1 Key Technologies Explored in Research project	
3.2 Setting up Overall Development Environment and Hardware	
3.3 Technologies Behind Remote Unit and Initial Configuration of Unit	
3.4 Functional Implementation of Remote unit	
3.5 Functional Implementation of Central System	
3.6 Overall Integration within Central Unit and Database Structure	
3.7 Integration of Remote Unit with Central Unit	

Chapter 4 – System Testing and Evaluation	5
4.1 Setting up Testing Environment and Assumptions Made	5
4.2 Testing and Evaluation Methodology	6
4.3 Scenario Based Testing	8
4.4 System Test and Statistics on Actual Environment	4
4.5 Evaluation	
Chapter 5 - Conclusion	6
5.1 Conclusion	6
5.2 Further work	7
References6	8
Appendices7	1
A - Complete Screen and Source code for Central unit	
B - Detailed information on SMART UPS protocols	
C - Circuitry Used in Remote Controlling Equipment	
D - Souce Code for Remote Unit	
E - Assembling/Loading Firmware and Initialization Process to TINI Evaluation Kit	

LIST OF FIGURES

Number	Page
Figure 1.1 – Typical Network connectivity and operation	3
Figure 1.2 – Disconnection due to power outages and Isolation	3
Figure 2.1 – Standalone approach	7
Figure 2.2 – Client / Server approach	8
Figure 2.3 – Proposed system Design	11
Figure 2.4 – TINI evaluation board [2]	15
Figure 2.5 – Functional layout of the Central unit	16
Figure 3.1 – Initial cabling setup for loading firmware to remote unit [8]	21
Figure 3.2 – TINIIs400 verification module with TINIIm400 module inserted[2]	22
Figure 3.3 – DSTINIm400 module [2]	23
Figure 3.4 – TINI Software Architecture [3]	24
Figure 3.5 – Functional description of power source to TINI	26
Figure 3.6 – Standard 5V regulator circuit [15]	27
Figure 3.7 – Sample network configuration of a network settings in TINI	30
Figure 3.8 – List of Available commands in TINI Operating System	31
Figure 3.9 – Cabling / functional model of remote unit	33
Figure 3.10 – Cable pin out of APC serial cable [18]	36
Figure 3.11 – DS1920-F5 i-button [5]	38
Figure 3.12 – Remote Control Circuit used to Control Fans in Prototype system	39
Figure 3.13 – Messaging done in various modules of remote unit java code	40
Figure 3.14 – Alert Threshold configuration Screen	44
Figure 3.15 – Status information display based on device id	46
Figure 3.16 – Contact registration page with customization based on location	47
Figure 3.17 – Reference Libraries used in Prototype system	48

Figure 3.18 – Screen for remote control of equipment		
Figure 3.19 – The statistics report generation screen		
Figure 3.20 – Menu system used in Central unit		
Figure 3.21 – The Access Database Structure of Central Unit	53	
Figure 4.1 – Test environment Cabling setup	55	
Figure 4.2 – Short power failure	58	
Figure 4.3 – Normal Status of a Remote Device	59	
Figure 4.4 – Status display of registered module	60	
Figure 4.5 – SMS message notifying Power increase in remote location	60	
Figure 4.6 – A power failure that goes over grace period no alert	61	
Figure 4.7 – SMS Alert received notifying power failure	62	
Figure 4.8 – Actual Deployment Setup of prototype system	63	

LIST OF TABLES

Number Page 13 Table 2.1 – Summary of microcontrollers and evaluation boards Table 3.1 - Few sample status codes of APC smart serial protocol [18] 34 35 Table 3.2 – APC Smart Protocol Alerts information [18] 43 Table 3.3 - System events, triggers, alerts and thresholds 56 Table 4.1 – Remote unit function Test 57 Table 4.2 – Central unit function test 64 Table 4.3 - Statistics on actual deployment

ACKNOWLEDGEMENTS

I wish to acknowledge my research supervisor Mrs. Vishaka Nanayakkara who had a unique way of encouraging me on making this project a success, sitting and discussing problems and guiding me amidst really busy schedule of her as MSc Coordinator, Head of Computer Science Department of University of Moratuwa.

My sincere thanks must go to Mr. Prabhath Dehigaspitiyage, Director / Information Technology of The Open University of Sri Lanka for allowing me to do my research project and granting me permission to deploy the system on running campus network.

l also wish to thank my parents Mr. P.M. Jayasena, Mrs. Somalatha Cooray, and loving brother Mr. Hemantha Punchimudiyanse for their great moral support to have ease of my mind to be engaged in research project.

Finally I wish to thank all my friends and colleagues in my work place who have encouraged me and supported me on various ways in making this research project a reality.

GLOSSARY

OUSL	-	The Open University of Sri Lanka
TINI	-	Tini InterNet Interfaces
ICT	-	Information and Communication Technology
IT	-	Information Technology
PC	-	Personal Computer
SMS	-	Short Message Service
UPS	-	Uninterrupted Power Supply
TCP / IP	-	Transmission Control Protocol / Internet Protocol
RAM	-	Random Access Memory
UDP	-	User Datagram Protocol
JDK	-	Java Development Kit
SDK	-	Software Development Kit
TFTP	-	Trivial File Transfer Protocol
НТТР	-	Hyper Text Transfer Protocol
APC	-	American Power Conversion

converse located on Narrala. Narrala suggeds and several reported severas and south the second shared to all yours of the converse, the passe remains of the locate in terminal or being approximation of the converse of the converse of the location of the

12.1.1. A propried with home and a second second second form for an and a second se

