ADAPTIVE VIDEO STREAMING FOR BANDWIDTH VARIATION WITH OPTIMUM QUALITY

Joseph Michael Wijayantha Medagama

(08/8015)

Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master

of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

February 2012

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate hias called out research for the Masters thesis under my supervision Electronic Theses & Dissertations www.lib.mrt.ac.lk

Signature of the supervisor:

Date

Prof. Dileeka Dias

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor:

Dr. M.S.D Fernando

Date

Abstract

Bandwidth scarcity is a common problem faced in video transmission over broadband networks, particularly in wireless medium. It is important to find solutions for that since high bandwidth consuming video applications such as video streaming, video conferencing are of high interest to the broadband and mobile users today.

This thesis presents adaptive video streaming based methodology to address the given problem. Adaptive streaming is discussed through transcoding. It is a solution that can be adopted to overcome this problem in any network environment.

Conversion of video to a form that has less information so that the resulting data volume is appropriate for streaming over a low bandwidth scenario can be done with transcoding. But the video quality drops due to transcoding. A compromise can be made between the video quality and network delay. Effect on video quality and data volume with the variation of transcoding parameters are analyzed in this research, especially with the temporal scaling parameters. A relationship between the transcoding parameters, the data volume reducing factor and the video quality is obtained through numerical methods. Hence a methodology derived from the numerical method is proposed to achieve an adaptive streaming solution. One of the significant outcomes of this thesis is the video quality measurement mechanism proposed that could be used in the presence of spatial and temporal scaling.

This solution presents the best transcoding parameters to achieve optimum quality video in a low bandwidth situation. With that, when there is a large number of users are sharing the network, they could watch a video at a lower, but acceptable quality with no interruption.

Keywords University of Moratuwa, Sri Lanka. Keywords Video quality, Frame Rate, Quantization Electronic Theses & Dissertations www.lib.mrt.ac.lk To my parents and my wife for their love, support and encouragement

Acknowledgements

I would like to express my most heartfelt gratitude and appreciation to my supervisor Prof. Dileeka Dias. Thank you very much for all the guidance, support and assistance given me to be successful in this research. I would also like to show my gratitude to my supervisor Dr. Shantha Fernando for giving me the guidance on successfully completing the research work. This research would not have been possible without your valuable support and advice.

I would like to thanks research coordinator Dr. Ajith Pasqual, progress review committee member Dr. Chathura De Silva for all the precious advice and comments given. I'm grateful to do my research studies in the department of Electronics and telecommunication as I got immense support and valuable comments from the academic staff of the department during the period of research work carried out. Therefore I thank all the staff members for their best support given.

The work that I have done would not have been possible unless the work done by all the other researches and authors who have published their work that is related to the material included in this thesis. Materials in their publication has greatly influenced and helped me to put into reality my awakresearch idea and to carry them out till the end.

My spatial thanks to all my colleagues who have worked/ are working with me at the Dialog Mobile Communications Research Laboratory as they all have been very cooperative in completing my research.

I am grateful to Dialog Telekom Ltd for their sponsorship for this research. I also like to thank the non academic staff for their support on this research.

My profound thank to all my teachers, lectures, friends and all those who have helped me to be the person that I am.

Finally, but not the least I thank my family for their encouragement and support throughout my academic career.

TABLE OF CONTENTS

Decl	aration o	f the candidate & Supervisor	i
Abst	tract		ii
Dedi	ication		iii
Ack	nowledge	ements	iv
Tabl	e of cont	ents	v
List	of Figure	25	viii
List	of Tables	5	ix
List	of abbrev	viations	Х
List	of Apper	ndices	xii
1.	Introd	Introduction	
	1.1	Introduction	1
	1.2	Problem	1
	1.3	Motivation	1
	1.4	Objective	2
	1.5	Contributionrsity of Moratuwa, Sri Lanka.	3
	1.6	Outlind of the The Sheses & Dissertations	4
2.	Relati	aworkwww.lib.mrt.ac.lk	5
	2.1	Introduction	5
	2.2	Adaptive Video Streaming	6
	2.2.1	Adaptive Video Streaming Over Internet	6
	2.2.2	Wireless Network	12
	2.2.3	Mobile Network	14
	2.2.4	Summary on Adaptive Video Streaming	16
	2.3	Video Quality Measurement	17
	2.3.1	Introduction	17
	2.3.2	Subjective Video Quality Measurement	18
	2.3.3	Objective Video Quality Measurement	18
	2.3.4	Summary on Video Quality Measurement	23
	2.4	Summary	25
3.	Methodology		27

	3.1	Introduction	27
	3.2	Methodology	28
	3.3	Steps Adapted	
	3.4	4 Summary	
4.	Adaptive Video Streaming		32
	4.1	Introduction	32
	4.2	Selection of Transcoding Parameters	32
		4.2.1 Selected Parameters	32
		4.2.2 Omitted Parameters	33
	4.3	Study of video quality measurement	34
	4.4	Video Characteristics	38
	4.5	Test Environment	38
		4.5.1 Transcoding	39
		4.5.2 Video Steaming	39
	4.6	Data Collection	40
	dir	4.6.1 DRP and VQV matrices	40
	4.7	Summary Electronic Theses & Dissertations	42
5.	Resu	ts and Analysis www.lib.mrt.ac.lk	43
	5.1	Introduction	
	5.2	Results	43
		5.2.1 Data Volume Reduction Percentage	43
		5.2.2 Quality Measurement	44
	5.3	Analysis	46
		5.3.1 Data Volume Reduction Percentage	46
		5.3.2 Quality Measurement	52
	5.4	Numerical model	54
	5.5	Summary	55
6.	Adaptation Mechanism		56 56
	6.1	Introduction	
	6.2	Adaptation	
	6.3	Summary	58 59
7.	Conc	Conclusion	

7.1 Future Work	60
Reference List	62
Appendix A : DRP Matrices	66
Appendix B : VQV Matrices	69

List of Figures

Figure 2.1: SSIM measurement system	20
Figure 3.1: Process overview	29
Figure 3.2: Flow chart of methodology	31
Figure 4.1: Variation of subjective video quality, subjective score	
with FR for video-bus, screen resolution- CIF	34
Figure 4.2: Variation of parameter c with summation of NFD and NMV	
for screen resolution-CIF	35
Figure 4.3: Test set environment	39
Figure 4.4 Variation DRP with QF of a test video sequence	41
Figure 5.1: variation of DRP with QF for video- football	47
Figure 5.2: variation of DRP with QF for $FR - 10$, video- football	47
Figure 5.3: Variation of γ and γ with FR for video football	48
Figure 5.4 : Variation of γ and γ with FR	50
Figure 5.5: variation of DRP with OF for video - football anka.	50
Figure 5.6 Variation of DRP with QF and FR	51
Figure 5.7: variation of Video Quality _{spatial} value QF	52
Figure 5.8: variation of α with NFD	53
Figure 5.9: Variation of β with NFD for different video clips	53
Figure 5.10: VQV for QF and FR variations	54
Figure 6.1: Adaptation mechanism	56

Page

List of Tables

Table 2.1: Summary of adaptive video streaming over internet	7
Table 2.2: Adaptation table for example video stream.	8
Table 2.3: Summary of adaptive video streaming over wireless network	12
Table 2.4: Summary of adaptive video streaming over mobile network	14
Table 2.5: Impact of video coding parameters on resource of the mobile	
client	15
Table 2.6: Summary of objective video quality measurement	19
Table 5.1: DRP for QF and FR variation for video "football"	44
Table 5.2: SSIM video quality values for variable QF	44
Table 5.3: VQV for QF and FR variation for video "football"	46

Page

List of Abbreviation

Abbreviation	Description
ARSM	Auto Rate Selection Mechanism
CIF	Common Intermediate Format
DCT	Discrete Cosine Transform
DI	Digital Item
DIA	Digital Item Adaptation
DRP	Data Reduction Percentage
DSCQS	Double Stimulus Continuous Quality Scale
DSIS	Double Stimulus Impairment Scale
DVQ	Digital Video Quality
FR	Frame Rate
HVS	Human Visual System
ITS	Institute of Telecommunication Science
ITU	International Telecommunication Union
JND	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations
LAN	Local Area Network
MAC	Media Access Control
MOS	Mean Opinion Square
MSE	Mean Square Error
NFD	Normalize Frame Difference
NMV	Normalize Motion Vector
NTIA	National Telecommunication and Information Administration
PEVQ	Perceptual Evaluation of Video Quality
PSNR	Peak Signal to Noise Ratio
QF	Quantization Factor
QoS	Quality of Service
ROI	Region Of Interest
SNR	Signal to Noise Ration
SS	Single Stimulus
SSE	Sum of Square Error

SSIM	Structural Similarity Index
SVC	Scalable Video Coding
USHA	Universal Seamless Handoff Architecture
VLC	VideoLan Client
VQEG	Video Quality Experts Group
VQM	Video Quality Matrix
VQV	Video Quality Value
VTP	Video Transport Protocol

List of Appendices

Appendix	Description	Page
Appendix – A	DRP Matrices	66
Appendix – B	VQV Matrices	69

