REFERENCES

1. B. Volesky, "Detoxification of metal-bearing effluents: biosorption for the next century," Hydrometallurgy, 2001, pp. 203–216.

2. B. Volesky, and Z.R. Holan, "Biosorption of heavy metals," Biotechnology Prog., 1995, pp.235-250.

3. A.J. Varma, S.V. Deshpande, and J.F. Kennedy," Metal complexation by chitosan and its derivatives: a review," Carbohydrate Polymers, 2004, pp.77-93.

4. E. Guibal, "Interactions of metal ions with chitosan-based sorbents: A review,"Separation and Purification Technology, 2004, pp.43-74.

5. M.D.L. Grey, P.L. Buckingham, and J.C. Evans, "Hazardous waste management," McGraw-Hill, New York, 1994.

6. K. Yong, S. Seog, M. Hyun, Y. Kyong, P. Young, K. Bom, and S. C. Chong, "Chitosan and its derivatives for tissue engineering applications," Biotechnology Advances, 2008, pp.1-21.

7. V. T. Nguyen, "Production of chitin and chitosan from partially autolyzed shrimp shell materials," The open biomaterials journal, 2009, pp.1,21.

8. K. Prashanth, and R. Tharanathan, "Chitin/chitosan: modifications and their unlimited application potential any overview at Trends Sri Food Science & Technology, 2007, pp.18, 17, 131 Electronic Theses & Dissertations

9. J. Synowick, and WWAibAl-Khateeb, "Production, Properties and some new Applications of Chitin and its Derivatives," Critical Reviews in Food Science and Nutrition, 2003, pp.145-171.

10. A. Sağ, and Y. Aktay, "Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin," Process Biochemistry, 2000, pp.36, 157-173.

11. J.R. Deans, and B.G. Dixon, "Uptake of Pb^{2+} and Cu^{2+} by novel bio polymers," Water Research, 1992, pp.26, 469-472.

12. A. Domard, "Some physicochemical and structural basis for applicability of chitin and chitosan, " 2nd Asia Pacific chitin Symposium, Bangkok, Nov.9, 1996, pp. 1-11.

13. G.F. Payne, W.G. Sun, and A. Sohrabi, "Tyrosinase reaction/ Chitosan adsorption for selectively removing phenols from aqueous mixtures," Biotechnology and Bioengineering, 1992, pp.1011-1018.

14. Saucedo, I., Guibal, E. Roulph, C.H, and Clorirec, L.P., 1992, Sorption of Uranyl ions by a modified chitosan, Environmental Technology, 13: 1101-1115.

15. T. Edelio, C. Gustavo, and C. Galo, "Retention capacity of chitosan for copper and mercury ions," journal of the chilean chemical society, 2003, pp.48.

16. R. Schmuhl, H.M. Krieg, and K.Keizer,"Adsorption of Cu(II) and Cr(VI) ions by chitosan: Kinetics and equilibrium studies," Water SA., 2001, pp. 1-7.

17. D. Kratochvil, and B. Volesky, "Advances in the biosorption of heavy metals," Tibtech. 16, 1998, pp. 291-300.

18. E. Guibal, "Interactions of metal ions with chitosan-based sorbents: A review," Separation and Purification Technology, 2004, pp. 43-74.

19. C.C. Hung, J.H. Chen, and Y.C. Wei, "The electrosorption of metal ions by chitosan fabrics," Advanced chitin Science, 1998, pp.435-454.

20. Y.B. Kim, S.M. Han, C.S. Yun, and S.J. Kang, "Production of pure water through chitinous purification systems from the used water," Advances in Chitin Science, 1998, pp.391-397.

21. U. Peuphaibool, B. Pratuengmas, P. Sompongchikul, and S. Danteerawaint, "Adsorption of Chromium (III) by chitosan prepared blank tiger shrimp shell," Proc. of the 1st National environmental conference. Bangkok, January 17-19, 2002, pp. 423-424.

22. I.B. Rae, and S.W. Gibb, "Removal of metal from aqueous solutions using natural chitinous Materials," Journal of Applied Polymer Science, 2002, pp. 44-5027.

23. R.K. Mohammad, "A review of several reported procedures to determine the DD of N- acetylation for chitin and chitosan using infrared spectroscopy," Carbohydrate polymers, 2007, pp.497-508.

24. V.T. Nguyen, H. Chuen, N. Kyaw, S. Trung, and F.S. Willem, "Production of high-quality chitin and chitosan from preconditioned shrimp shells," Journal of Chemical Technology and Biotechnology, 2006, pp. 1413–1118.

25. L. Pranec, H. Chuen, C. Suwalee, and FisseWillium, "Effect of Chemical Treatment on the Characteristics of Shrimp Chitosan," Journal of Metals, Materials and Minerals. Vol. 12, 2002; pp. 11-18.

26. L. Zouhour, S. Salah, S.Saloua, and E.A.Amor," Extraction and characterization of chitin and chitosan from crustacean by-products- biological and physicochemical properties," African journal of biotechnology, 10 (4), 2010, pp.640-647.

27. V. Kathleen, and K. Paul, "Structure analysis and degree of substitution of chitin, chitosan and dibutylchitin by FT-IR spectroscopy and solid state ¹³C NMR," Carbohydrate polymers. 58, 2004, pp. 409-416.

28. K. Jolanta, C. Malgorzata, K. Zbigniew, B.Anna, B. Krysztof, T. Jorg, and S. Piotr, "Application of Spectroscopic methods for structural analysis of chitin and chitosan," Marine drugs 8, 2010, pp.1570-1577.

29. Metcalf, and Eddy, "Treatment Disposal and Reuse (3^{ed})," Wastewater Engineering, 1991, pp. 30-35.

30. E. Guibal, "Interactions of metal ions with chitosan-based sorbents: A review," Separation and Purification Technology, 2004, pp.38: 43-74.

31. G.A. Sewvandi and S.U. Adikary," Removal of heavy metal in waste water using chitosan", Joint International symposium on social management systems 2011,IESL-SSMS 2011, Colombo, Sri Lanka, 14-15 September 2011, pp. 123-126,.

32. G.A. Sewvandi and S.U. Adikary, "Synthesis and characterization of natural biopolymer chitosan derived from shrimp type penaeus monodon," Twenty third annual congress – 2011, Peradeniya, Sri Lanka, 17-18 November 2011, pp.33.

33."Model Project on Chitosan Preparation," May 2011; <u>http://planning.up.nic.in./innovations/inno3/fi/chitosan.html</u>.

34. "Alibaba.com," Jnu. 2012; http://www.alibaba.com/showroom/chitosan-price.html,

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

APPENDIX - A

The income and expenditure for the chitosan plant is based on the following assumptions: No. of working days in a month =20 days

No. of working days in a month		=20 days
No. of shift in a day		=2
No. of working months in a year		= 10 months
Duration of a shift		=8 hrs
Capacity utilization		
60% in the 1 st year		
70% in the 2^{nd} year		
80% in the 3^{rd} year		
Yield of chitosan from 1000g of dry	matter	= 100g
Production of chitosan per shift		= 100kg
Production per day		= 200kg
Sale price of chitosan		= Rs. 1000/kg
Income from sale of chitosan		
First year (60%)	=120 days x	200 kg x Rs.1000= Rs.240 lakh
Second year (70%)	=140 days x	200 kg x Rs.1000= Rs.280 lakh
Third year (80%)	=160 days x	200 kg x Rs.1000= Rs.320 lakh

List of equipments required for a 40f TPA chitosan plant Lanka.

Deminerative mild steel vessel with fiber glass liming of 500 kg capacity Deproteiniser mild steel vessel with 500 kg capacity Deacetylator mild steel vessel with 500 kg capacity Boiler	=3 no =2 no =2 no
Washing vessel stainless steel 1.5 m diameter and 1m height	= 1 no
Screw press	= 1 no
Tray dryer 5m x 2m x 2m	= 1 no
Pulveriser 50 – 70 kg/hr	= 1 no
Water pump 3 hp	= 2 no
Alkali and acidic pumps 3 hp (2 each)	= 4 no
Acid storage tanks 2500 L capacity	= 2 no
Alkali makeup tanks 2500 L capacity	= 2 no
Hot air drive with accessories	= 1 no
Generator set	= 1 no
Drainage equipments	= 2 no
Aluminum trays (100 cm x 50 cm x 4 cm)	= 150 no

APPENDIX – B

Financial requirements for setting up of a 40 TPA chitosan plant

Items	Specificati	Rate	Cost(Rs.
	on		Lakh)
A. Capital cost			
Land	1 acre	12lakh	12.00
Land development		LS	4.00
Subtotal A			16.00
B. Civil structures			
Plant and machinery room including open	$75 \times 100 \text{ ft}^2$	Rs.690/ ft^2	51.75
shed for raw material and store room			
Office room	500 ft^2	Rs. 805 ft^2	4.025
Internal roads, watchmen shed etc.	LS	LS	1.725
Subtotal B			57.50

Items	Nos	Capacity	Rate	Cost(Rs. Lakh)
Demineraliser	3	500kg	1.725	5.175
Deproteiniser	2	500kg	1.725	3.450
Deacetylato University	v 20f Mor	atookg, Sri I	2.8751.	5.750
Washing vessel) Electronic	Theses	3000 isserta	ibas	5.750
Screw press	nt ac lk		LS	5.750
Pulveriser WWW.110.1	T Lac.in	50-70 Kg hr	LS	2.300
Acid storage tanks	2	2500 L	LS	2.300
Alkali makeup tanks	2	2500 L	LS	3.450
Pumps	4	3 hp	0.575	2.300
Water pump	2	3 hp	0.575	1.150
Boiler			LS	4.600
Drainage equipments			LS	11.500
Aluminum trays	150		0.0115	1.725
Generator set			LS	6.900
Vehicle (truck)			LS	11.500
Miscellaneous			LS	8.050
Total C				81.650

Total A+ B+C= Rs. 155.15 Lakh

Recurring expenses

A- Raw material per batch

Particulars	Quantity	Rate	Amount (Rs. In lakh)
Shrimp shell waste	1000 kg	-	-
Commercial grade NaOH	200 kg	50	0.100
Commercial grade HCl	50 L	90	0.045
Commercial grade acetic acid	28 L	225	0.063
Fuel, water and electricity	LS	LS	0.138
Total			0.346

Raw material input cost requirement per year Rs.0.346 lakh x 2 batches x 200 days at 100% utilization =Rs.138.4 lakh

80% utilization= Rs. 110.72 lakh

B- Labor requirement for the factory

Personnel	No. required	Salary(Rs.)/ month	Total (Rs.)
Manager	1	30,000	30,000
Technician	2	20,000	40,000
Supervisors Univer	rsity of Morat	uts.000Sri Lanka.	60,000
Electrician Electro	phic Theses &	12,000 stations	12,000
Court all illed	5	10,000	50,000
Unskilled men WWW.	ig.mrt.ac.lk	8,000	48,000
Unskilled women	20	6,000	120,000
Total			360,000

C- Administrative staff

Personnel	No.	Salary(Rs.)/	Total (Rs.)
	required	month	
Manager	1	20,000	20,000
Marketing, financing and	2	15.000	30,000
purchasing			
Account assistant	2	8,000	16,000
Administrative and marketing	2	8,500	17,000
assistance			
Quality control technician	1	10,000	10,000
Driver	1	6,000	6,000
Watcher	1	5,000	5,000
Total			104,000

D- Total recurring expenses for one year – Full capacity (Rs.in lakh)

Input cost	138.4
Packing and marketing charges/ ton of chitosan at	4.6
Rs. 11,500 / ton for 40 tons	
Salaries and wages (12 x (360,000+104,000))	55.68
Administrative expenses at Rs. 11,500 / month	1.38
Miscellaneous	2.3
Total	202.36

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

APPENDIX –C

Financial analysis of a chitosan planr with a capacity of 40 TPA

Capital cost = Rs. 155.15 lakh

Recurring cost For 1st year For 2nd year For 3rd year = Rs. 145.16 lakh = Rs. 159.46 lakh = Rs. 173.76 lakh Since the capacity utilization for 1st, 2nd and 3rd year are 60%, 70% and 80%.

Particulars		Year	
Cash outflows	1	2	3
Capital cost	155.15		
Recurring cost	145.16	159.46	173.76
Total	300.31	159.46	173.76
Cash inflows			
Income	240.00	280.00	320.00
Profit	-60.31	120.54	146.24
Assuming discount factor as 15%			
	0.869	0.756	0.658
Present value of cash outflows	260.96	120.55	114.33
Present value of cashvieflows of Moratuwa	208.56	nk211.68	210.56

The difference between present value of cash inflows and present value of cash outflows is equal to net present value (NPV).

NPV = 134.96

Since NPV is positive this project can be accepted.