LIST OF ANNEXTURES

1. ANNEXTURE - A	STANDARD SYMOLS AND ABBREVIATIONS.
2. ANNEXTURE - B	: LIST OF EQUATIONS.
3. ANNEXTURE-C	LIST OF FIGURES.
4. ANNEXTURE - D	DERIVATION OF \triangle P FOR TAPER CHANNEL.
5. ANNEXTURE - E	: PRODUCTS IN THE MARKET / PROFILE CROSS SECTION.
6. ANNEXTURE - F	: PRODUCTS IN THE MARKET / PROFILE CROSS SECTION wwwlibemrac lk
7. ANNEXTURE - G	PRODUCTS IN THE MARKET / PROFILE CROSS SECTION.
8. ANNEXTURE - H	DESIGNED PRODUCT DIMENSIONS AND DRAWING.
9. ANNEXTURE - I	DESIGNED PRODUCT, DIE \& CALIBRATOR DIMENSIONS.
10. ANNEXTURE - S	APPROXIMATION OF PROFILE DIE DIMENSIONS TO A SLIT DIE.
11. ANNEXTURE - T	: DIE LAYOUT.

ANNEXTURE - A

LIST OF SYMBOLS \& GLOSSARY

SYMBOLS

1. A $=$ Cross Sectional Area of Extrudate.
2. b = Shape Function.
3. $\mathrm{b}^{*}=$ Factor Representing Deformation Occuring in Inlet Zone.
4. $\mathrm{Bi}=$ Biot Number.
5. $\mathrm{C}=$ Characteristic Relaxation time.
6. $\mathrm{C}_{\mathrm{p}}=$ Specific Heat Capacity.
7. D,t = Thickness of Extrudate.
8. G = Elastic Shear Modulus.
9. $\mathrm{H}_{1}=$ Height of slit die at Land.
10. $\mathrm{H}_{2} \quad=$ Height of Slit Die, Before Taper Section.
11. $\mathrm{H}_{3}=$ Equivalent Height of Product.
12. $H_{E} \quad=$ Height of Slit Die Extrudate at equilibrated Swell State.
13. $h_{1}=$ Slit or Cone, Die Inlet Height.
14.ho = Slit or Cone, Die outlet Height.
15.K $=$ Proportionality Factor of Power Law Equation, $\tau=\mathrm{K}(\gamma)^{n}$
14. K* $\quad=$ Constant related to Short Die Swell Model.
17.L = Length of a Flow Channel.
18.m $\quad=$ Power Law Index of Power Law Equation, $\gamma=\phi .(\tau)^{m}$
15. $\mathrm{N}=$ Power Law Index of Power Law Equation, $\tau=\mathrm{K}(\gamma)^{n}$
20.p $\quad=$ Rheological Parameter Related to Stevenson Die Design Model.
21.q $=$ Rheological Parameter Related to Stevenson Die Design Model.
16. Q $\quad=$ Volumetric Flow Rate. $\left(\mathrm{m}^{3} / \mathrm{s}\right)$
23.R = Radius of a Flow Channel.
24.r $\quad=$ Rheological Parameter Related to Stevenson Die Design Model.
25.s $=$ Rheological Parameter Related to Stevenson Die Design Model.
17. S, B = Die Swell.
18. $T_{(x, t)}=$ Temperature of The Extrudate at x Distance and at Time t.
19. $T_{F} \quad=$ Cooling Media Temperature.
20. $\mathrm{T}_{\mathrm{M}}=$ Melt Temperature.
21. $\mathrm{t}_{v} \quad=$ Residence Time.
22. $\mathrm{V} \quad=$ Volumetric Flow Rate. $\left(\mathrm{mm}^{3} / \mathrm{s}\right)$
23. W $W_{1}=$ Width of Slit Die at Land.
24. $\mathrm{W}_{2} \quad=$ Width of Slit Die, Before Taper Section.
25. $\mathrm{W}_{3} \quad=$ Equivalent Width of Product.
26. $\mathrm{W}_{\mathrm{E}} \quad=$ Width of Slit Die Extrudate at equilibrated Swell State.
36.z = Distance Along z Axis.
27. $\Delta \mathrm{P} \quad=$ Pressure Drop.
28. $\Phi \quad=$ Degree of Cooling.
$39 . \Theta=$ Horizontal Convergent Angle of Two Dimensional Converging Flow Channel.
29. $\alpha=$ Size Factor wwo lib mach
30. $\alpha_{n} \quad=$ Heat Transfer Coefficient in Calibration Equipment.
31. $\alpha_{t} \quad=$ Linear Coefficient of Thermal Expansion.
32. $\alpha_{0} \quad=$ Half Natural Convergent angle in Extrusion Dies.
33. $\beta=$ Shape Function.
34. $\delta=$ Heat transfer Related Variable
35. $\varepsilon \quad=$ Tensile Strain.
36. $\varepsilon \quad=$ Tensile Deformation Rate.
37. $\phi \quad=$ Proportionality Constant of Power Law Equation, $\gamma=\phi .(\tau)^{m}$
38. $\gamma \quad=$ Shear Rate.
39. $\eta=$ Absolute Viscosity.
40. $\lambda \quad=$ Thermal Conductivity.
41. $\mu=$ Friction Coefficient.

ANNEXTURE - B

LIST OF EQUATIONS

(1). $\quad \mathrm{Q}=\Pi \cdot \Delta \mathrm{P} \cdot \mathrm{R}^{4} /(8 \eta \cdot \mathrm{~L})$
$Q=$ Melt flow rate in a capillary.
$\Pi=A$ constant.
$\Delta \mathrm{P}=$ Pressure drop across the capillary.
$R=$ Radius of the capillary.
$L=$ Length of the capillary.
$\eta=$ Viscosity of the fluid.
(2). $\quad \tau=\eta \cdot \gamma$
$\tau=$ Shear stress
$\eta=$ Viscosity of the fluid.
$\gamma=$ Shear rate .
(9) Uninerrity of Morstuwa Sri Lanka
(3). $\quad \sigma=E . \varepsilon$
$\sigma=$ Tensile Stress
$\varepsilon=$ Tensile Rate
$\mathrm{E}=$ Tensile Modulus.
(4). $\quad \tau=\eta \cdot \gamma^{n}$
$\tau=$ Shear stress
$\eta=$ Viscosity of the fluid.
$\gamma=$ Shear rate.
$\mathrm{n}=$ Power Law index
(5). $\Delta P_{\text {ToT }}=\Delta P_{\text {ent }}+\Delta P_{\text {tube }}+\Delta P_{\text {exit }}$
$\Delta \mathrm{P}_{\text {Tot }}=$ Total Pressure Drop
$\Delta P_{\text {ent }}=$ Entrance Pressure Drop.
$\Delta P_{\text {tube }}=$ Pressure Drop Due to Flow Resistance.
$\Delta \mathrm{P}_{\text {exit }}=$ Pressure Drop at the Die Exit.
(6). $\quad Q=\left[n \cdot \Pi R^{3} /(3 n+1)\right]^{*}\{R \cdot \Delta P / 2 K L\}^{1 / n}$
$\Delta P=$ Pressure Drop in the Tube.
R = Inside Radius of the Tube.
$\mathrm{L}=$ Length of the Tube.
K = Power Law Constant.
n = Power Law Constant.
(7). $\quad \Delta \mathrm{P} / \mathrm{L}=\left[2^{m+1} \cdot(m+2) \cdot V /\left(\phi \cdot B \cdot H^{m+2}\right)\right]^{1 / m}$
$\Delta \mathrm{P}=$ Pressure Drop Across the Rectangular Slit.
$L \quad=$ Length of the Slit.
M = Power Law Index of the Melt.
$\phi=$ Proportionality Constant in the Power Law.
$V=$ Volumetric Out Put Across the Slit.
B = Breadth of the Rectangular Slit. Lations
$H=$ Height of the Rectangular Slit.
(8). $\varepsilon_{\text {cone }}=1 / 2 \gamma \tan \omega$
$\varepsilon=$ Extensional strain rate
$\gamma=$ Shear rate at the exit of the taper
$\omega=$ Half angle of taper
(9). $\quad \varepsilon_{\text {slit }}=1 / 3 . \gamma \tan \omega=\gamma \cdot\left(h_{1}-h_{0}\right) / 6 L$
$\varepsilon=$ Extensional strain rate
$\gamma=$ Shear rate at the exit of the taper
$\omega=$ Half angle of taper
(10). $\Delta \mathrm{P}_{\text {tot }}=\Delta \mathrm{P}_{\text {ent }}+\Delta \mathrm{P}_{\text {land }}+\Delta \mathrm{P}_{\text {shear }}+\Delta \mathrm{P}_{\text {exit }}$ $\Delta \mathrm{P}_{\text {тот }}=$ Total Pressure Drop.
$\Delta \mathrm{P}_{\text {ent }}=$ Entrance Pressure Drop.
$\Delta P_{\text {land }}=$ Land Pressure drop.
$\Delta \mathrm{P}_{\text {shear }}=$ Pressure Drop due to Shear.
$\Delta P_{\text {exit }}=$ Pressure Drop At Exit Of The Die
(11). $\quad \Delta \mathrm{P}_{\mathrm{S}}=\mathrm{I} / 2 \mathrm{ntan} \omega\left\{1-\left(\mathrm{h}_{0} / h_{1}\right)^{2 n}\right\}$
$\Delta \mathrm{P}_{\mathrm{S}}=$ Pressure drop due to shear flow.
$\tau=$ Shear Stress
$\mathrm{n}=$ Flow behavior index
ω = Half angle of taper
$h_{0}=$ Thickness of wedge at Outlet
$h_{1}=$ Thickness of wedge at Inlet
(12). $\Delta \mathrm{P}_{\mathrm{EXT}}=1 / 2 \sigma_{0}\left\{1-\left(h_{0} / h_{1}\right)^{2 n}\right\}$
$\Delta \mathrm{P}_{\mathrm{ENT}}=$ Pressure drop due to shear flow.
$\sigma_{0}=$ Tensile Stress Corresponding to Tensile Deformation Rate.
$\mathrm{n}=$ Flow behavior index
$h_{0}=$ Thickness of wedge at Outlet
$h_{1}=$ Thickness of wedge at Inlet
(13). $\quad \Delta \mathrm{P}=\left[\eta \cdot \cot \theta\left(Q\left(4 n+2 N W_{1} n\right)\right)^{n}\right]\left[\left(\mathrm{H}_{2}^{-2 n}-\mathrm{H}_{1}^{-2 n}\right) / 2 \mathrm{n}^{*}\left(1+\mathrm{nH} \mathrm{H}_{1} \cot \theta / W_{1} \cot \Theta\right)+\left(\mathrm{H}_{2}^{1-2 n}-\right.\right.$ $\left.\left.H_{1}{ }^{1-2 n}\right)^{*}\left(n \cot \theta W_{1}(1-2 n) \cot \Theta\right)\right]$
$\Delta \mathrm{P}=$ Pressure drop across the wedge.
$\theta=$ Vertical taper angle of the wedge.
$\Theta=$ Lateral taper angle of the wedge.
$\mathrm{n}=$ Power law index.
$\mathrm{H}_{1}=$ Height of wedge at taller end of the wedge.
$\mathrm{H}_{2}=$ Height of the wedge at the shorter end of the wedge.
$W_{1}=$ Width of the wedge at the shorter end of the wedge.
(14). $n=1 / m$
$n, m=$ Power law indexes used in different equations.
(15). $K=(1 / \phi)^{1 / m}$
$K=$ Proportionality constant in power law equation.
$\phi=$ Proportionality constant in power law equation
$\mathrm{m}=$ Power law index.
(16). $\quad B_{R}{ }^{2}=2 / 3^{*} \gamma_{R}\left[\left(1+1 / \gamma_{R}\right)^{2 / 3}-1 / \gamma_{R}{ }^{3}\right]$
$\mathrm{B}_{\mathrm{R}}=$ Swelling Ratio
$\gamma_{R}=$ Recoverable Shear Strain.
(17). $\quad G=\tau / \gamma_{R}$
$\mathrm{G}=$ Elastic Shear Modulus
$\tau=$ Shear Stress
$\gamma_{R}=$ Recoverable Elastic Shear Strain.
(18). $S=a+b^{*} \cdot e^{(-t v / c)}$
$S=$ Swelling Potential
a = Velocity Profile
$t_{v} / c=$ Characteristic Relaxation Time of the Melt
$b^{*}=$ Representing Factor for Deformation Occurring at the Inlet.
(19). $\quad \mathrm{B}=\left[1+3 / 2 \cdot(\mathrm{n}+1) \cdot \mathrm{K} \cdot \tan ^{2} \alpha_{0} \cdot\left(\Delta \mathrm{P}_{\mathrm{ENT}} / \tau_{\mathrm{w}}\right)\right]^{1 / 2}$
$B=$ Die swell value.
$\mathrm{n}=$ Power law index.
$K=L_{0} / D_{c}$
$\alpha_{0}=$ Half natural convergent angle of polymer melts.
$\Delta \mathrm{P}_{\mathrm{ENT}}=$ Entry pressure drop.
$\tau_{w}=$ Shear stress at the die wall.
$L_{c}=$ Length of the entry converging region.
$D_{c}=$ Diameter defined in the diagram.
(20). $\quad \alpha_{i j}=A_{i} / A_{j}$
$\alpha_{i j}=$ Size factor between points I and j
$A_{1}=$ Extrudate cross section at position i.
$A_{j}=$ Extrudate cross section at position j.
(21). $\quad \beta_{1}=X_{i}\left(A_{1}\right)^{1 / 2}$
$\beta_{1}=$ Shape factor at point i .
$X_{1}=$ Characteristic dimension of extrudate at position i.
$A_{1}=$ Area of extrudate at position i .
(22). $\quad \beta_{i j}=b_{i} / b_{j}=\left(X_{j} / X_{1}\right) /\left(A_{j} / A_{i}\right)^{1 / 2}=X_{j} / X_{i} /\left(\alpha_{i j}\right)^{1 / 2}$
$\beta_{i j}=$ Shape factor between points I and j.
$X_{j}=$ Characteristic dimension at position i.
$X_{1}=$ Characteristic dimension at position j .
$\alpha_{i j}=$ Size factor between points I and j.
(23).

$$
\begin{aligned}
& \beta_{i j}^{y}=\left[\left(H_{i}^{y} / H_{1}^{y}\right) /\left(W_{i}^{x z} W_{1}^{x z}\right)\right]^{1 / 2} \\
& \beta_{i j}^{y}=\text { Shape factor between position } i \text { and } j \\
& H_{i}^{y}=\text { Height of channel y at position } j \\
& H_{i}^{y}=\text { Height of channel } y \text { at position } i \\
& W_{i}^{x z}=\text { Width of channel } x z \text { at position } j \\
& W_{1}^{x z}=\text { Width of channel } x z \text { at position } I
\end{aligned}
$$

$$
\begin{equation*}
H_{4}^{y}=\left(\beta^{Y}{ }_{1 E} \beta^{Y}{ }_{E 3} \beta_{34}\right)\left(\alpha_{13}^{Y} \alpha^{Y}{ }_{34}\right)^{1 / 2} \cdot H^{Y}{ }_{1} \tag{24}
\end{equation*}
$$

$\mathrm{H}_{4}{ }^{y}=$ Height of channel y at position 4
$\beta^{y}{ }_{1 E}=$ Shape factor for channel y between points 1 and E
$\beta_{E 3}^{Y}=$ Shape factor for channel y between points 3 and E
$\alpha^{Y}{ }_{13}=$ Size factor for channel y between points 1 and 3
$\alpha^{\gamma}{ }_{34}=$ Size factor for channel y between points 3 and 4
$\mathrm{H}^{\curlyvee}{ }_{1}=$ Height of channel y at position 1
(25).
$W_{E} W_{1}=\left(H_{E} / H_{1}\right)^{r}$
$\mathrm{W}_{\mathrm{E}}=$ Extrudate width at equilibrated swell state.
$\mathrm{W}_{1}=$ Width at die.
$H_{E}=$ Height of product at equilibrated swell state.
$H_{1}=$ Height of product at die .
$r=$ Material dependant constant.
(26). $\quad W_{3} W_{E}=\left(H_{3} / H_{E}\right)^{s}$
$\mathrm{W}_{\mathrm{E}}=$ Extrudate width at equilibrated swell state.
$W_{3}=$ Product width.
$H_{E}=$ Height of extrudate at equilibrated swell state.
$H_{1}=$ Height of die.
s = Material dependant constant.
(27). $\quad Q^{y}=W_{1}{ }^{y} \cdot\left(H_{1}^{y}\right)^{2} / F(n)\left\{H_{1}{ }^{y} \cdot \Delta P /\left(2 m^{*} . L_{1}\right)^{y / n}\right.$
$\mathrm{Q}^{y}=$ Volumetric out Put Across the Channel y .
$W_{1}{ }^{y}=$ Width of the Channel.
$H_{1}{ }^{y}=$ Height of the Channel.
$F(n)=2 .(1 / n+2) \quad$ Unicrity or Montuma Sri Lanka
$\Delta \mathrm{P}=$ Pressure Drop Across' the Channel.
$\mathrm{m}^{*}=$ Rheological Parameters of the Melt.
$L=$ Length of the Channel.
$\mathrm{n}=$ Power Law Index.
(28). $\quad H_{E} / H_{1}=\left[1+p .(\tau)^{q^{1 / 4}}\right]^{1 / 4}$
$\mathrm{p}=$ Width of Slit at Product.
$\tau=\Delta \mathrm{PH}_{1} / 2 \mathrm{~L}_{\mathrm{I}}$, Shear Stress Applied in the Slit.
$H_{E}=$ Height of Slit at Equilibrated Swell State
$H_{1}=$ Height of Slit at Die
$q=$ Constant.
(29). $\tau=\Delta$ P. H/2.L
$\tau=$ Shear Stress
$\Delta \mathrm{P}=$ Pressure Drop Applied Across the Flow channel.
$H=$ Height of the Channel.
$L=$ Length of the Channel.
(30).
$\beta^{y}{ }_{1 E}=\left[\left(H_{E}^{y} / H_{1}^{y}\right) /\left(W_{E}^{x z} W_{1}^{x z}\right)\right]^{1 / 2}=\left[1+p\left(\tau^{y}\right)\right]^{(1-r) / 8}$
$\beta_{I E}{ }^{\gamma}=$ Shape Factor for Channel y, Between Points $1 \& E$.
$p=$ Constant Depending on Rheological \& Die Swell Properties.
$\tau^{Y}=$ Shear Stress Applied in Section Y.
$r=$ Constant
$\beta^{x 2}{ }_{1 E}=\left[\left(H_{E}^{x z} / H_{1}^{x z}\right) /\left(W_{E}^{Y} W_{1}^{Y}\right)\right]^{1 / 2}=\left[\beta_{1 E}{ }^{Y}\right]^{-1}$
$\beta_{E 3}{ }^{\varphi}=$ Shape Factor For Channel Y, Between Points E \& 3.
$\alpha_{E 3}{ }^{\curlyvee}=$ Size Factor For Channel Y, Between Points E \& 3.
$s=$ Constant Depending on Rheological \& Die Swell Properties.
(32). $\alpha_{1 E}{ }^{Y}=\left(1+p .(\tau)^{9}\right)^{(r+1) / 4}$
$\alpha_{1 E}{ }^{Y}=$ Size Factor for Channel y.
$p=$ Constant Depending on Rheological \& Die Swell Properties.
$q=$ Constant Depending on Rheological \& Die Swell Properties.
$r=$ Constant Depending on Rheological \& Die Swell Properties.
(33). $\alpha_{13}{ }^{\mathrm{r}}=\left\{\mathrm{H}_{1}{ }^{\mathrm{y}} /\left(\mathrm{U}_{3} \cdot \mathrm{~F}(\mathrm{n})\right)\right\} \cdot\left\{\tau \mathrm{y} / \mathrm{m}^{*}\right\}^{1 / n}$
$\alpha_{13}{ }^{\gamma}=$ Size Factor for Channel y, between points $1 \& 3$.
$\mathrm{H}_{1}{ }^{\mathrm{y}}=$ Height of the Channel.
$U_{3}=$ Die Exit Velocity.
$F(n)=2 .(1 / n+2)$
$\tau_{Y}=$ Shear Stress Applied in Channel Y.
$\mathrm{m}^{*}=$ Constant.
n = Power Law Index.
(34).
$\left.\beta_{E 3}{ }^{\gamma}=\left[\alpha_{E 3}\right]^{\gamma}\right]^{(1-s) / 2(s+1)}$
$\beta_{E 3}{ }^{\gamma}=$ Shape Factor For Channel Y, Between Points E \& 3.
$\alpha_{E 3}{ }^{\gamma}=$ Size Factor For Channel Y, Between Points E \& 3.
$s=$ Constant Depending on Rheological \& Die Swell Properties.
(35). $\quad \alpha_{E 3}{ }^{Y}=\alpha_{13}{ }^{Y} / \alpha_{1 E} Y$
$\alpha_{E 3}{ }^{Y}=$ Size Factor for Channel y, between points E \& 3.
$\alpha_{13}{ }^{\gamma}=$ Size Factor for Channel y, between points $1 \& 3$.
$\alpha_{\mathrm{IE}}{ }^{\curlyvee}=$ Size Factor for Channel y, between points $1 \& E$.
(36). $\left.\quad H_{3}{ }^{y} / H_{1}{ }^{y}=\beta_{I E}{ }^{Y} \beta_{E 3}{ }^{Y}\left(\alpha_{13}\right)^{Y}\right)^{1 / 2}$
$\mathrm{H}_{3}{ }^{\mathrm{y}}=$ Product Thickness at Position Y .
$\mathrm{H}_{1}{ }^{\mathrm{y}}=$ Die Thickness at Position Y.
$\beta_{\mathrm{IE}}{ }^{Y}=$ Shape Factor Between Die and Equilibrated State at Position Y.
$\beta_{\mathrm{E} 3}{ }^{\mathrm{Y}}=$ Shape Factor Between Equilibrated State and Product at Position Y.
$\alpha_{13}{ }^{Y}=$ Size Factor Between Die and Product at Position Y.
(37). $\left.\quad W_{3}{ }^{X Z} / W_{1}{ }^{X Z}=\beta_{I E}{ }^{X Z} \beta_{E 3} X Z\left(\alpha_{13}\right)^{Y}\right)^{1 / 2}$
$W_{3}{ }^{x z}=$ Product Width at Position $X Z$.
$W_{1}{ }^{x Z}=$ Die Width at Position $X Z$.
$\beta_{\mathrm{IE}}{ }^{\mathrm{XZ}}=$ Shape Factor Between Die and Equilibrated State at Position XZ.
$\beta_{\mathrm{E} 3}{ }^{\mathrm{xz}}=$ Shape Factor Between Equilibrated State and Product at Position
$X Z$.
$\alpha_{13}{ }^{Y}=$ Size Factor Between Die and Product at Position Y.
(38). $\quad \tau_{\text {wall }}=-p . \mu_{G} \cdot \exp \left[\left(2 \mu_{G} / R\right) .(L-z)\right]$
$R=$ Radius of the tube.
$P_{L}=$ Melt pressure at distance L.
$\mu_{\mathrm{G}}=$ Friction coefficient in slipping.
$\mu_{\mathrm{H}}=$ Friction coefficient in adhesion.
$\tau_{\text {crit }}=$ Critical wall stress.
(39). $\quad \Phi=\left(T_{(x, 1)}-T_{F}\right) /\left(T_{M}-T_{F}\right)$
$\mathrm{T}_{\mathrm{M}}=$ Melt temperature.
$\mathrm{T}_{\mathrm{F}}=$ Cooling media temperature.
$T_{(x, t)}=$ Temperature of the extrudate at x distance and at time t.
(40). $\quad\left(T_{(x, t)}-T_{F}\right) /\left(T_{M}-T_{F}\right)=[2 \operatorname{Sin} \delta /(\delta+\operatorname{Sin} \delta . \operatorname{Cos} \delta)] \cdot e^{-} \delta^{2} a t / D^{2} \cdot \operatorname{Cos}(\delta . x / D)$
$T_{(x, t)}=$ Temperature at melt / frozen melt interface.
$T_{F}=$ Temperature of Cooling Fluid.
$T_{m}=$ Temperature of Melt.
$\delta=$ Dimensionless Parameter.
$a=\lambda / \rho . C_{p}$
$\mathrm{t}=$ Time Taken to Form a Required Thickness of Frozen Melt.
D = Wall Thickness of the Extrudate.
$\mathbf{x}=$ Thickness of Frozen Melt.
(41). $\quad \alpha_{n} \cdot D / \lambda=B i$
$\alpha_{h}=$ Heat transfer coefficient
$D=$ Wall thickness of the extrudate.
$\lambda=$ Thermal conductivity.
$\mathrm{Bi}=$ Biot number
(42). $\delta=\alpha_{n} D / \lambda . \cot \delta$.
$\delta=$ Dimensionless Parameter.
$\alpha_{h}=$ Heat Transfer Coefficient
$\mathrm{D}=$ wall Thickness of the extrudate
$\lambda=$ Thermal Conductivity
(43). $\quad v(T)=1 / \rho(T)$
$v(T)=$ Volume of melt at temperature T.
$\rho(T)=$ Density of melt at temperature T.
(44). $\rho(T)=\rho\left(T_{0}\right) * 1 /\left(1+\alpha_{1}\left(T-T_{0}\right)\right)$
$\alpha_{t}=$ Linear coefficient of thermal expansion
$\rho\left(T_{0}\right)=$ Density at the reference temperature T_{0}

$$
\rho(T)=\text { Density at temperature } T
$$

(45). $L_{2}=I_{1} *\left(1+\alpha_{1} \Delta T\right)$
$\Delta T=$ Temperature difference
$\alpha_{1}=$ Thermal expansion coefficient
$L_{2}=$ Length of extrudate at melt temperature.
$I_{1}=$ Length of solidified extrudate at room temperature.
(46). $\tau=\Delta \mathrm{P} \cdot \mathrm{H} / 2 . \mathrm{L}$
$\Delta P=$ Pressure Drop Across the Slit.
$\tau=$ Shear Stress Applied.
L = Length of Slit Channel.
$H=$ Height of Slit Channel.
(47). $V_{z}=(\phi / m+2) \cdot(\Delta P / L)^{m} \cdot(H / 2)^{m+1}$
$V_{z}=$ Average Velocity at the Slit.
$\phi=$ Proportionality Constant of Power Law Equation.
$\mathrm{m}=$ Power Law Index.
$\Delta \mathrm{P}=$ Pressure Drop Across the Slit.
$\mathrm{L}=$ Length of Slit.

ANNEXTURE - C

LIST OF FIGURES

1. Fig. $1:$ Recoverable Shear Strain vs Swelling Ratio.
2. Fig. 2 : Elastic Recovery Behavior of LDPE and Ethylene Propylene
Copolymer at $230^{\circ} \mathrm{C}$.
3. Fig. 3 : Extrudate Swelling And It's Causes.
4. Fig. 4 : Swelling Ratio As A Function Of The Length Of The Die Land.
5. Fig. 5 : Swelling Ratio As A Function Of The Apparent Shear Rate.
6. Fig. $6 \quad$ Relationship Between The Swelling Ratio And The Residence Time
In The Die Land.
7. Fig. 7 : Diagram For The Short Die Flow Of Polymer Melts.
8. Fig. 8 : Locations Along An Extrusion Line.
9. Fig. 9 : Classification Of Slit Profile Dimensions.
$\begin{aligned} \text { 10. Fig. } 10 & \text { : Rectangular Extrudate Undergoing Geometrically Similar } \\ & \text { Deformation (Left) And Shape Change Dependant Size Change } \\ & \text { (Right). }\end{aligned}$
10. Fig. 11 : Dimensional change along an extrusion line for plasticised PVC.
11. Fig. 12 : Die Swell For LDPE As A Function Of Shear Rate At The Wall Of
The Die And Melt Temperature.
12. Fig. 13 : Variation In Pressure And The Shear Stress At The Wall In The Case Of Slippage Along The Wall.
13. Fig. 14 : Model For Cooling Of An Extrudate.
14. Fig. 15 : Specific Volume As A Function Of Temperature.
15. Fig. 16 : Specific Volume as a Function of Temperature and Pressure..

University of Morstuwa, Sri Lanka.
Electronic Theses \& Dissertations
www Iiburtacth

ANNEXTURE - D

DERIVATION OF PRESSURE DROP EQUATION FOR TAPERED CHANNELS:

 REF: EQUATION (13).> Pressure Drop for a Parallel Slit Channel; $$
\begin{array}{l}\Delta P=2 \eta L(\xi+1)\{Q(4 n+2) / n\}^{n} \cdot \xi^{-(n+1)} \cdot H^{-(3 n+1)} \\ \xi=\text { W/H }, \text { Shape Factor. } \\ \eta=\text { Viscosity of the Melt. } \\ L=\text { length of Slit. } \\ Q=\text { Volumetric Out Put. } \\ n=\text { Power Law Index. } \\ H=\text { Height of Slit. }\end{array}
$$

Tapering rectangular Channel,
Consider a tapering channel of constant cross sectional rectangular shape. The height h , at any point along the length I , is defined by,

$$
\begin{align*}
& h=H_{1}-2.1 \cdot \tan \theta \tag{13.2}\\
& \xi h=\xi H_{1}-2 . I \cdot \tan \phi \tag{13.3}
\end{align*}
$$

Where, θ and ϕ are the vertical and lateral taper angles.

$$
\begin{align*}
& \text { Similarly, } \xi=\cot \theta / \cot \phi, \\
& \text { From }(A 2), \mathrm{dl}=-(\mathrm{dh} / 2) . \cot \theta \tag{13.4}
\end{align*}
$$

Incremental Pressure drop dP is obtained by, substituting dl for L and h for H , and integration between limits $\mathrm{H}_{1} \& \mathrm{H}_{2}$ yields,

$$
\begin{equation*}
\Delta P=(\eta \cdot \cot \theta / 3)(\xi+1) \xi^{-(n+1)}\{Q \cdot(4 n+2 / n)\}^{n}\left[H_{2}^{-3 n}-H_{1}^{-3 n}\right] \tag{13.5}
\end{equation*}
$$

Taking ξ, as a constant, simplifying using binomial theorem gives, (A6);
$\Delta P=\left[\eta \cdot \cot \theta\left(Q\left(4 n+2 N W_{1} n\right)\right)^{n}\right]\left[\left(H_{2}{ }^{-2 n}-H_{1}{ }^{-2 n}\right) / 2 n^{*}\left(1+n H_{1} \cot \theta / W_{1} \cot \phi\right)+\left(H_{2}^{1-2 n}-H_{1}^{1-}\right.\right.$ $\left.\left.{ }^{2 n}\right)^{*}\left(n \cot \theta W_{1}(1-2 n) \cot \phi\right)\right]$

DESIGNED PRODUCT DIMENSIONS \& DRAWINGS

All dimensions are in mm

I_{1}	l_{2}	I_{1}^{\prime}	I_{2}^{\prime}	I_{3}	I_{4}
31.3	26.9	28.2	26.1	1.5	1.05

t	R_{1}	R_{2}		X	Y
1.05	2.0	2.0	3.0	6.0	

R1 - Outer Surface Radius
R2 - Inner Surface Radius

Units in mm
Die Equilibrated Swell State Product 11 31.28 31.33 31.30 11 29.22 29.17 29.20 12 26.88 26.93 26.90 $\frac{1}{2}$ 24.82 24.77 24.80 13 28.22 28.17 28.20 14 26.08 26.13 26.10 x 3.03 2.98 3.00 y 6.00 6.02 6.00 R1 2.00 1.98 2.00 R2 2.00 2.02 2.00 t 1.03 1.08 1.05

ANNEXTURE - S

APPROXIMATION OF PROFILE DIE DIMENSIONS TO A SLIT DIE.

1.0 Product Die Dimensions;

Width of Equivalent slit die, (Ref. Annex. - H)
$=2 \times\{6.00-2.00+3.14 \times 2.00+1 / 4 \times 2 \times 3.14 \times 2.00\}+29.2-2 \times 2.0$
$=2 x\{4.00+3.14(2+1)\}+25.20$
$=\underline{52.04} \mathrm{~mm}$
Height of Equivalent slit die, (Ref. Annex - H)
= Thickness of the product.
$=1.05 \mathrm{~mm}$
2.0 Die Land Dimensions;

Width of Equivalent Slit Die $=\underline{\mathbf{5 2 . 1 4} \mathbf{~ m m}}$, (Ref. 6.3)
Height of Equivalent Slit Die $=\mathbf{1 . 0 3} \mathbf{~ m m}$, (Ref. 6.3)
3.0Die Dimensions, Parallel Section Before the Taper:

Width of Equivalent Slit Die $=52.04+7.05 \mathrm{~mm}$ (Ref. $8.0 \& 6.0$)
(Taper Angle 10°) $=\underline{59.09 \mathrm{~mm}}$
Height of Equivalent Slit Die $=1.05+7.05 \mathrm{~mm}$ (Ref. $8.0 \& 6.0$) (Taper Angle 10°)
$=\underline{8.10 \mathrm{~mm}}$
4.0Equilibrated Swell State Slit Profile Dimensions;

Width of the Equilibrated Slit Die $=\mathbf{5 3 . 0 3} \mathbf{~ m m} \quad$ (Ref. 6.3)
Height of the Equilibrated Slit Die $=\underline{1.07} \mathbf{~ m m}$ (Ref. 6.3)

DIE LAYOUT OF THE DESIGNED PROFILE EXTRUSION DIE

LIST OF REFERENCES

1. W. Michaeli; Extrusion Dies for Plastics and Rubber. Hanser, Germany 1992
2. M. V. Joshi; Dies for Plastics Extrusion - Principals of Design and Construction. Macmillan, India 1992.
3. R.S. Lenk; Rheology and Die Design, Developments in Plastics Technology. Applied Science Publishers, London 1982. pp. 229-239.
4. Natti S. Rao; Design Formulas for Plastics Engineers. Hanser, New York 1991. pp. 11-19.
5. Peter Lewis; Polymer Processing. The Open University Press, London 1984. P. 27
6. Chris J. Rauwendal: Advanced Extrusion. The Plastics \& Rubber Institute, London 1983. pp. 1-3.
7. Chris J. Rauwendal: Two Stage Extruder Screws. The Plastics \& Rubber Institute, London 1983. pp. 3-7.
8. Peter Lewis: Introduction to Polymers. The Open University Press, London 1984. pp. 38-43.
9. Peter Lewis: Advanced Processing. The Open University Press, London 1984. pp. 10-15.
10. Vishu Shah: Handbook of Plastics Testing Technology. John Wiley \& Sons, New York, 1984. pp. 7-17.
11. Edward J Wickson: Handbook of PVC Formulation. John Wiley \& Sons, New York 1993. pp. 369-375.
12. Modern Plastics encyclopedia Handbook. Macgraw-Hill Incorporation, New York 1994. pp. 70-73.
13. R.H. Burgess: Manufacture \& Processing of PVC. Applied Science Publishers, London 1992. pp. 221-227.
14. Peter Lewis: Polymer Engineering Data Book. The Open University Press, London 1984. pp. 18-27.
