LIST OF ANNEXTURES

- 1. ANNEXTURE A : STANDARD SYMOLS AND ABBREVIATIONS.
- 2. ANNEXTURE B : LIST OF EQUATIONS.
- 3. ANNEXTURE C : LIST OF FIGURES.
- **4.** ANNEXTURE D : DERIVATION OF $\triangle P$ FOR TAPER CHANNEL.
- 5. ANNEXTURE E : PRODUCTS IN THE MARKET / PROFILE CROSS SECTION.
- 6. ANNEXTURE F : PRODUCTS IN THE MARKET / PROFILE CROSS
- 7. ANNEXTURE G : PRODUCTS IN THE MARKET / PROFILE CROSS SECTION.
- 8. ANNEXTURE H : DESIGNED PRODUCT DIMENSIONS AND DRAWING.
- 9. ANNEXTURE I : DESIGNED PRODUCT, DIE & CALIBRATOR DIMENSIONS.
- 10. ANNEXTURE S : APPROXIMATION OF PROFILE DIE DIMENSIONS TO A SLIT DIE.
- 11. ANNEXTURE T : DIE LAYOUT.

×

1

ANNEXTURE - A

LIST OF SYMBOLS & GLOSSARY

SYMBOLS

- 1. A = Cross Sectional Area of Extrudate.
- 2. b = Shape Function.
- 3. b* = Factor Representing Deformation Occuring in Inlet Zone.
- 4. Bi = Biot Number.
- 5. c = Characteristic Relaxation time.
- 6. C_p = Specific Heat Capacity.
- 7. D,t = Thickness of Extrudate.
- 8. G = Elastic Shear Modulus.
- 9. H_1 = Height of slit die at Land.
- 10.H₂ = Height of Slit Die, Before Taper Section.
- 11. H_3 = Equivalent Height of Product.
- 12. H_E = Height of Slit Die Extrudate at equilibrated Swell State.
- 13. h₁ = Slit or Cone, Die Inlet Height.
- 14. h_{\circ} = Slit or Cone, Die outlet Height.
- 15. K = Proportionality Factor of Power Law Equation, $\tau = K(\gamma)^n$
- 16. K* = Constant related to Short Die Swell Model.
- 17.L = Length of a Flow Channel.
- 18.m = Power Law Index of Power Law Equation, $\gamma = \phi_{-}(\tau)^{m}$
- 19. N = Power Law Index of Power Law Equation, $\tau = K(\gamma)^n$
- 20.p = Rheological Parameter Related to Stevenson Die Design Model.
- 21.q = Rheological Parameter Related to Stevenson Die Design Model.
- 22.Q = Volumetric Flow Rate. (m^3/s)
- 23.R = Radius of a Flow Channel.
- 24.r = Rheological Parameter Related to Stevenson Die Design Model.

25. s	= Rheological Parameter Related to Stevenson Die Design Model.
26. S, B	= Die Swell.
27. T _(x,t)	= Temperature of The Extrudate at x Distance and at Time t.
28. T _F	= Cooling Media Temperature.
29. T _M	= Melt Temperature.
30. t _v	= Residence Time.
31.V	= Volumetric Flow Rate. (mm³/s)
32. W ₁	= Width of Slit Die at Land.
$33.W_2$	= Width of Slit Die, Before Taper Section.
$34.W_3$	= Equivalent Width of Product.
$35.W_{E}$	= Width of Slit Die Extrudate at equilibrated Swell State.
36. z	= Distance Along z Axis.
37.∆P	= Pressure Drop.
38 .Φ	= Degree of Cooling.
39 .	= Horizontal Convergent Angle of Two Dimensional Converging
Flow Cha	annel. University of Moratuwa, Sri Lanka.
40.α	= Size Factor.www.lib.mrt.ac.lk
41. α_h	= Heat Transfer Coefficient in Calibration Equipment.
42 . α _t	= Linear Coefficient of Thermal Expansion.
43 . α ₀	= Half Natural Convergent angle in Extrusion Dies.
44 .β	= Shape Function.
45 .δ	= Heat transfer Related Variable.
46.ε	= Tensile Strain.
47 .ε ⁻	= Tensile Deformation Rate.
48 . φ	= Proportionality Constant of Power Law Equation, $\gamma = \phi.(\tau)^m$
49.γ	= Shear Rate.
50.η	= Absolute Viscosity.
51.λ	= Thermal Conductivity.
52.μ	= Friction Coefficient.

4

à

ŧ

ANNEXTURE - B

LIST OF EQUATIONS

- (1). $Q = \Pi . \Delta P . R^{4} / (8\eta . L)$
 - Q = Melt flow rate in a capillary.
 - Π = A constant.
 - ΔP = Pressure drop across the capillary.
 - R = Radius of the capillary.
 - L = Length of the capillary.
 - η = Viscosity of the fluid.
- (2). $\tau = \eta . \gamma$
 - τ = Shear stress
 - η = Viscosity of the fluid.
 - γ = Shear rate.
- University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk
- (3). $\sigma = E. \epsilon$
 - σ = Tensile Stress
 - ϵ = Tensile Rate
 - E = Tensile Modulus.
- (4). $\tau = \eta . \gamma^n$

ŧ

- $\tau =$ Shear stress
- η = Viscosity of the fluid.
- γ = Shear rate.
- n = Power Law index
- (5). $\Delta P_{\text{ToT}} = \Delta P_{\text{ent}} + \Delta P_{\text{tube}} + \Delta P_{\text{exit}}$

 ΔP_{ToT} = Total Pressure Drop

 ΔP_{ent} = Entrance Pressure Drop.

 ΔP_{tube} = Pressure Drop Due to Flow Resistance.

 ΔP_{exit} = Pressure Drop at the Die Exit.

- ΔP = Pressure Drop in the Tube.
- R = Inside Radius of the Tube.
- L = Length of the Tube.
- K = Power Law Constant.
- n = Power Law Constant.
- (7). $\Delta P/L = [2^{m+1}.(m+2).V/(\phi.B.H^{m+2})]^{1/m}$
 - ΔP = Pressure Drop Across the Rectangular Slit.
 - L = Length of the Slit.
 - M = Power Law Index of the Melt.
 - ϕ = Proportionality Constant in the Power Law.
 - V = Volumetric Out Put Across the Slit.
 - B = Breadth of the Rectangular Slit.etabors
 - H = Height of the Rectangular Slit.
- (8). $\varepsilon_{cone} = \frac{1}{2}\gamma tan\omega$

1

ŧ

- ϵ = Extensional strain rate
- γ = Shear rate at the exit of the taper
- ω = Half angle of taper
- (9). $\epsilon_{slit} = 1/3$. $\gamma tan \omega = \gamma . (h_1 h_0)/6L$
 - ϵ = Extensional strain rate
 - γ = Shear rate at the exit of the taper
 - ω = Half angle of taper
- (10). $\Delta P_{ToT} = \Delta P_{ent} + \Delta P_{land} + \Delta P_{shear} + \Delta P_{exit}$ $\Delta P_{ToT} = Total Pressure Drop.$

 ΔP_{ent} = Entrance Pressure Drop.

 ΔP_{land} = Land Pressure drop.

 ΔP_{shear} = Pressure Drop due to Shear.

 ΔP_{exit} = Pressure Drop At Exit Of The Die

(11). $\Delta P_s = \iota/2ntan\omega \{1 - (h_0/h_1)^{2n}\}$

 ΔP_s = Pressure drop due to shear flow.

- τ = Shear Stress
- n = Flow behavior index
- ω = Half angle of taper
- h₀ = Thickness of wedge at Outlet
- h₁ = Thickness of wedge at Inlet

(12).
$$\Delta P_{EXT} = 1/2\sigma_0 \{1 - (h_0/h_1)^{2n}\}$$

 ΔP_{ENT} = Pressure drop due to shear flow.

- σ_0 = Tensile Stress Corresponding to Tensile Deformation Rate.
- n = Flow behavior index. mt.ac.lk
- h₀ = Thickness of wedge at Outlet
- h₁ = Thickness of wedge at Inlet
- (13). $\Delta P = [\eta . \cot\theta (Q(4n+2/W_1n))^n][(H_2^{-2n}-H_1^{-2n})/2n^*(1+nH_1\cot\theta/W_1\cot\Theta) + (H_2^{1-2n}-H_1^{1-2n})^*(n\cot\theta/W_1(1-2n)\cot\Theta)]$
 - ΔP = Pressure drop across the wedge.
 - θ = Vertical taper angle of the wedge.
 - Θ = Lateral taper angle of the wedge.
 - n = Power law index.
 - H_1 = Height of wedge at taller end of the wedge.
 - H_2 = Height of the wedge at the shorter end of the wedge.

 W_1 = Width of the wedge at the shorter end of the wedge.

(14). n = 1/m

1

n,m = Power law indexes used in different equations.

(15). K = $(1/\phi)^{1/m}$

K = Proportionality constant in power law equation.

 ϕ = Proportionality constant in power law equation

m = Power law index.

(16).
$$B_R^2 = 2/3^* \gamma_R[(1+1/\gamma_R)^{2/3} - 1/\gamma_R^3]$$

 B_R = Swelling Ratio

 γ_{R} = Recoverable Shear Strain.

(17).
$$G = \tau / \gamma_R$$

G = Elastic Shear Modulus

 τ = Shear Stress

 γ_{R} = Recoverable Elastic Shear Strain.

(18).
$$S = a + b^* \cdot e^{(-tv/c)}$$

S = Swelling Potential a = Velocity Profile Discronic These & Dissertations t_v/c= Characteristic Relaxation Time of the Melt b* = Representing Factor for Deformation Occurring at the Inlet.

(19). **B** =
$$[1 + 3/2.(n+1).K.tan^2\alpha_0.(\Delta P_{ENT}/\tau_w)]^{1/2}$$

B = Die swell value.

n = Power law index.

 $K = L_{e}/D_{c}$

 α_0 = Half natural convergent angle of polymer melts.

 ΔP_{ENT} = Entry pressure drop.

 τ_w = Shear stress at the die wall.

 L_c = Length of the entry converging region.

 D_c = Diameter defined in the diagram.

$$(20). \quad \alpha_{ij} = A_i / A_j$$

1

 α_{ij} = Size factor between points I and j

 A_i = Extrudate cross section at position i.

 A_j = Extrudate cross section at position j.

(21). $\beta_1 = X_1 t A_1 y^{1/2}$

 β_i = Shape factor at point i.

X_i = Characteristic dimension of extrudate at position i.

 A_i = Area of extrudate at position i.

(22).
$$\beta_{ij} = b_i/b_j = (X_i/X_i)/(A_j/A_i)^{1/2} = X_j/X_i/(\alpha_{ij})^{1/2}$$

 β_{ij} = Shape factor between points I and j.

X_i = Characteristic dimension at position i.

X₁ = Characteristic dimension at position j.

 α_{ij} = Size factor between points I and j.

(23).
$$\beta^{y}_{ij} = [(H_{i}^{y}/H_{i}^{y})/(W_{j}^{xz}/W_{i}^{xz})]^{1/2}$$

 β^{y}_{ij} = Shape factor between position i and j H_{i}^{y} = Height of channel y at position j H_{i}^{y} = Height of channel y at position i W_{j}^{xz} = Width of channel xz at position j W_{i}^{xz} = Width of channel xz at position I

(24).
$$H_4^{y} = (\beta^{y}_{1E}\beta^{Y}_{E3}\beta_{34})(\alpha^{Y}_{13}\alpha^{Y}_{34})^{1/2}H^{Y}_{1}$$

 H_{4}^{y} = Height of channel y at position 4 β^{y}_{1E} = Shape factor for channel y between points 1 and E β^{Y}_{E3} = Shape factor for channel y between points 3 and E α^{Y}_{13} = Size factor for channel y between points 1 and 3 α^{Y}_{34} = Size factor for channel y between points 3 and 4 H_{1}^{Y} = Height of channel y at position 1

(25).
$$W_E W_1 = (H_E / H_1)^r$$

 $W_E = Extrudate width at equilibrated swell state.$
 $W_1 = Width at die.$

 H_E = Height of product at equilibrated swell state.

 H_1 = Height of product at die.

r = Material dependant constant.

(26). $W_3/W_E = (H_3/H_E)^s$

W_E = Extrudate width at equilibrated swell state.

 W_3 = Product width.

 H_{E} = Height of extrudate at equilibrated swell state.

 H_1 = Height of die.

s = Material dependant constant.

(27).
$$Q^{y} = W_{1}^{y} (H_{1}^{y})^{2} / F(n) \{H_{1}^{y} \Delta P / (2m^{*} L_{1}^{y})^{1/n}\}$$

Q^y = Volumetric out Put Across the Channel y.

 W_1^y = Width of the Channel.

 H_1^y = Height of the Channel.

F(n) = 2.(1/n+2) University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

 ΔP = Pressure Drop Across the Channel.

m* = Rheological Parameters of the Melt.

L = Length of the Channel.

n = Power Law Index.

(28).
$$H_E/H_1 = [1 + p.(\tau)^q]^{1/4}$$

X

1

p = Width of Slit at Product.

 $\tau = \Delta PH_I/2L_I$, Shear Stress Applied in the Slit.

H_E = Height of Slit at Equilibrated Swell State

H_I = Height of Slit at Die

q = Constant.

(29). $\tau = \Delta P.H/2.L$

 τ = Shear Stress

 ΔP = Pressure Drop Applied Across the Flow channel.

H = Height of the Channel.

L = Length of the Channel.

(30).
$$\beta_{1E}^{y} = [(H_{E}^{y}/H_{I}^{y})/(W_{E}^{xz}/W_{I}^{xz})]^{1/2} = [1+p(\tau^{y})]^{(1-r)/8}$$

 β_{IE}^{Y} = Shape Factor for Channel y, Between Points I & E.

- p = Constant Depending on Rheological & Die Swell Properties.
- τ^{Y} = Shear Stress Applied in Section Y.
- r = Constant
- (31). $\beta^{xz}_{1E} = [(H_{E}^{xz}/H_{I}^{xz})/(W_{E}^{Y}/W_{I}^{Y})]^{1/2} = [\beta_{1E}^{Y}]^{-1}$ $\beta_{E3}^{Y} =$ Shape Factor For Channel Y, Between Points E & 3. $\alpha_{E3}^{Y} =$ Size Factor For Channel Y, Between Points E & 3. s =Constant Depending on Rheological & Die Swell Properties.

(33).
$$\alpha_{13}^{Y} = \{H_1^{y}/(U_3 F(n))\} \cdot \{\tau_Y/m^*\}^{1/n}$$

 α_{13}^{Y} = Size Factor for Channel y, between points 1 & 3. H_1^{y} = Height of the Channel. U_3 = Die Exit Velocity. F(n) = 2.(1/n + 2) τ_Y = Shear Stress Applied in Channel Y. m^* = Constant. n = Power Law Index.

(34).
$$\beta_{E3}^{Y} = [\alpha_{E3}^{Y}]^{(1-s)/2(s+1)}$$

4

 β_{E3}^{Y} = Shape Factor For Channel Y, Between Points E & 3. α_{E3}^{Y} = Size Factor For Channel Y, Between Points E & 3. s = Constant Depending on Rheological & Die Swell Properties.

(35).
$$\alpha_{E3}{}^{Y} = \alpha_{13}{}^{Y}/\alpha_{IE}Y$$

 $\alpha_{E3}{}^{Y} =$ Size Factor for Channel y, between points E & 3.
 $\alpha_{13}{}^{Y} =$ Size Factor for Channel y, between points 1 & 3.
 $\alpha_{IE}{}^{Y} =$ Size Factor for Channel y, between points 1& E.

(36).
$$H_3^{y}/H_1^{y} = \beta_{IE}^{Y}\beta_{E3}^{Y}(\alpha_{13}^{Y})^{1/2}$$

$$\begin{split} H_{3}{}^{y} &= \text{Product Thickness at Position Y.} \\ H_{1}{}^{y} &= \text{Die Thickness at Position Y.} \\ \beta_{1E}{}^{Y} &= \text{Shape Factor Between Die and Equilibrated State at Position Y.} \\ \beta_{E3}{}^{Y} &= \text{Shape Factor Between Equilibrated State and Product at Position Y.} \\ \alpha_{13}{}^{Y} &= \text{Size Factor Between Die and Product at Position Y.} \end{split}$$

(37).
$$W_3^{XZ}/W_1^{XZ} = \beta_{IE}^{XZ}\beta_{E3}^{XZ}(\alpha_{13}^{Y})^{1/2}$$

 W_3^{XZ} = Product Width at Position XZ. W_1^{XZ} = Die Width at Position XZ. β_{1E}^{XZ} = Shape Factor Between Die and Equilibrated State at Position XZ. β_{E3}^{XZ} = Shape Factor Between Equilibrated State and Product at Position XZ.

 α_{13}^{Y} = Size Factor Between Die and Product at Position Y.

(38). $\tau_{wall} = -p. \mu_{G.} exp[(2\mu_G/R).(L-z)]$

R = Radius of the tube.

 P_L = Melt pressure at distance L.

 μ_G = Friction coefficient in slipping.

 $\mu_{\rm H}$ = Friction coefficient in adhesion.

 τ_{crit} = Critical wall stress.

(39). $\Phi = (T_{(x,t)} - T_F)/(T_M - T_F)$ $T_M = Melt temperature.$

 T_F = Cooling media temperature.

 $T_{(x,t)}$ = Temperature of the extrudate at x distance and at time t.

(40).
$$(T_{(x,t)} - T_F)/(T_M - T_F) = [2Sin\delta/(\delta + Sin\delta.Cos\delta)].e^{-\delta^2}at/D^2.Cos(\delta.x/D)$$

 $T_{(x,t)}$ = Temperature at melt / frozen melt interface.

T_F = Temperature of Cooling Fluid.

 T_m = Temperature of Melt.

 δ = Dimensionless Parameter.

a = $\lambda / \rho C_p$

t = Time Taken to Form a Required Thickness of Frozen Melt.

D = Wall Thickness of the Extrudate.

x = Thickness of Frozen Melt.

(41).
$$\alpha_h D/\lambda = Bi$$

 α_h = Heat transfer coefficient

D = Wall thickness of the extrudate.

 λ = Thermal conductivity:onic Theses & Dissertations Bi= Biot number

(42). $\delta = \alpha_h D / \lambda . cot \delta$.

 δ = Dimensionless Parameter.

 α_h = Heat Transfer Coefficient

D = wall Thickness of the extrudate

 $\lambda =$ Thermal Conductivity

(43). $v(T) = 1/\rho(T)$

4

v(T) = Volume of melt at temperature T.

 $\rho(T)$ = Density of melt at temperature T.

(44). $\rho(T) = \rho(T_0) * 1/(1 + \alpha_t(T-T_0))$

 α_t = Linear coefficient of thermal expansion $\rho(T_0)$ = Density at the reference temperature T_0

$\rho(T)$ = Density at temperature T

(45). $L_2 = I_1 * (1 + \alpha_1 \Delta T)$

1

Ľ

1

 ΔT = Temperature difference

 α_t = Thermal expansion coefficient

 L_2 = Length of extrudate at melt temperature.

 I_1 = Length of solidified extrudate at room temperature.

- (46). $\tau = \Delta P.H/2.L$
 - ΔP = Pressure Drop Across the Slit.
 - τ = Shear Stress Applied.
 - L = Length of Slit Channel.
 - H = Height of Slit Channel.

(47). $V_z = (\phi/m+2).(\Delta P/L)^m.(H/2)^{m+1}$

V_z = Average Velocity at the Slit. & Dissertations

 ϕ = Proportionality Constant of Power Law Equation.

m = Power Law Index.

 ΔP = Pressure Drop Across the Slit.

L = Length of Slit.

ANNEXTURE - C

LIST OF FIGURES

1. Fig. 1	: Recoverable Shear Strain vs Swelling Ratio.
2. Fig. 2	: Elastic Recovery Behavior of LDPE and Ethylene Propylene Copolymer at 230 °c.
3. Fig. 3	: Extrudate Swelling And It's Causes.
4. Fig. 4	: Swelling Ratio As A Function Of The Length Of The Die Land.
5. Fig. 5	: Swelling Ratio As A Function Of The Apparent Shear Rate.
6. Fig. 6	: Relationship Between The Swelling Ratio And The Residence Time Electronic Theses & Dissertations In The Die Land. Ib mit at Ik
7. Fig. 7	: Diagram For The Short Die Flow Of Polymer Melts.
8. Fig. 8	: Locations Along An Extrusion Line.
9. Fig. 9	: Classification Of Slit Profile Dimensions.
10. Fig. 10	: Rectangular Extrudate Undergoing Geometrically Similar Deformation (Left) And Shape Change Dependant Size Change (Right).
11. Fig. 11	: Dimensional change along an extrusion line for plasticised PVC.
12. Fig. 12	: Die Swell For LDPE As A Function Of Shear Rate At The Wall Of The Die And Melt Temperature.

1

4

X

Å

- 13. Fig. 13 : Variation In Pressure And The Shear Stress At The Wall In The Case Of Slippage Along The Wall.
- 14. Fig. 14 : Model For Cooling Of An Extrudate.
- 15. Fig. 15 : Specific Volume As A Function Of Temperature.
- 16. Fig. 16 : Specific Volume as a Function of Temperature and Pressure..

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

1

¥

>

ŀ

ANNEXTURE – D

DERIVATION OF PRESSURE DROP EQUATION FOR TAPERED CHANNELS; REF: EQUATION (13).

Pressure Drop for a Parallel Slit Channel;

 $\Delta P = 2 \eta L(\xi+1) \{Q(4n+2)/n\}^n \xi^{-(n+1)} \cdot H^{-(3n+1)}$ (13.1)

 $\begin{aligned} \xi &= W/H \text{ , Shape Factor.} \\ \eta &= Viscosity of the Melt. \\ L &= length of Slit. \\ Q &= Volumetric Out Put. \\ n &= Power Law Index. \\ H &= Height of Slit. \end{aligned}$

Tapering rectangular Channel,

h

Consider a tapering channel of constant cross sectional rectangular shape. The height h,at any point along the length l,is defined by,

$h = H_1 - 2.1.tan\theta$	(13.2)
ξh = ξH₁- 2.I.tanφ	(13.3)

Where, θ and ϕ are the vertical and lateral taper angles.

Similarly, $\xi = \cot\theta/\cot\phi$, From (A2), dl = -(dh/2). $\cot\theta$ (13.4)

Incremental Pressure drop dP is obtained by, substituting dI for L and h for H, and integration between limits $H_1 \& H_2$ yields,

$$\Delta P = (\eta \cdot \cot\theta/3)(\xi+1) \xi^{-(n+1)} \{Q \cdot (4n+2/n)\}^n [H_2^{-3n} - H_1^{-3n}]$$
(13.5)

Taking ξ , as a constant, simplifying using binomial theorem gives, (A6);

 $\Delta P = [\eta . \cot\theta (Q(4n+2/W_1n))^n] [(H_2^{-2n}-H_1^{-2n})/2n^*(1+nH_1\cot\theta/W_1\cot\phi) + (H_2^{1-2n}-H_1^{1-2n})^*(n\cot\theta/W_1(1-2n)\cot\phi)]$ (13)

CROSS SECTION OF A TRUNKING PROFILE IN THE MARKET (BRAND A)

s'

L

ANNEXTURE - F CROSS SECTION OF A TRUNKING PROFILE IN THE MARKET (BRAND B)

Ś

.

۶

ANNEXTURE - G CROSS SECTION OF A TRUNKING PROFILE IN THE MARKET (BRAND C)

-

Y.

ANNEXTURE – H **DESIGNED PRODUCT DIMENSIONS & DRAWINGS**

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

All dimensions are in mm

Ś

l ₁	l ₂	l'1	l ₂ ′	l ₃	l ₄
31.3	26.9	28.2	26.1	1.5	1.05

t	R ₁	R ₂	X	Y	
1.05	2.0	2.0	3.0	6.0	

ANNEXTURE – I DESIGNED PRODUCT, DIE, CALIBRATOR DIMENSIONS

R1 – Outer Surface Radius R2 – Inner Surface Radius Electronic Theses & Dissertations www.lib.mrt.ac.lk

	Die	Equilibrated Swell State	Product
11	31.28	31.33	31.30
í1 lí	29.22	29.17	29.20
12	26.88	26.93	26.90
12	24.82	24.77	24.80
13	28.22	28.17	28.20
14	26.08	26.13	26.10
x	3.03	2.98	3.00
у	6.00	6.02	6.00
R1	2.00	1.98	2.00
R2	2.00	2.02	2.00
t	1.03	1.08	1.05

1

ANNEXTURE - S

APPROXIMATION OF PROFILE DIE DIMENSIONS TO A SLIT DIE.

1.0 Product Die Dimensions;

1

Ý

Width of Equivalent slit die, (Ref. Annex. - H) = $2x\{6.00 - 2.00 + 3.14x2.00 + 1/4x2x3.14x2.00\}+29.2 - 2x2.0$ = $2x\{4.00 + 3.14(2+1)\} + 25.20$ = <u>52.04 mm</u>

Height of Equivalent slit die, (Ref. Annex - H) = Thickness of the product. = **1.05 mm**

2.0 Die Land Dimensions;

Width of Equivalent Slit Die = <u>52.14 mm</u>, (Ref. 6.3)

Height of Equivalent Slit Die = 1.03 mm, (Ref. 6.3)

University of Moratuwa, Sri Lanka.

3.0 Die Dimensions, Parallel Section Before the Taper;

Width of Equivalent Slit Die = 52.04 + 7.05 mm (Ref. 8.0 & 6.0) (Taper Angle 10°) = <u>59.09 mm</u>

Height of Equivalent Slit Die = 1.05 + 7.05 mm (Ref. 8.0 & 6.0) (Taper Angle 10°) = 8.10 mm

4.0 Equilibrated Swell State Slit Profile Dimensions;

Width of the Equilibrated Slit Die = <u>53.03 mm</u> (Ref. 6.3)

Height of the Equilibrated Slit Die = <u>1.07 mm</u> (Ref. 6.3)

ANNEXTURE-T

DIE LAYOUT OF THE DESIGNED PROFILE EXTRUSION DIE

LIST OF REFERENCES

1. W. Michaeli; Extrusion Dies for Plastics and Rubber. Hanser, Germany 1992

2. M. V. Joshi; Dies for Plastics Extrusion – Principals of Design and Construction. Macmillan, India 1992.

3. R.S. Lenk; Rheology and Die Design, Developments in Plastics Technology. Applied Science Publishers, London 1982. pp. 229 - 239.

4. Natti S. Rao; Design Formulas for Plastics Engineers. Hanser, New York 1991. pp. 11 - 19.

5. Peter Lewis; Polymer Processing. The Open University Press, London 1984. P. 27

6. Chris J. Rauwendal: Advanced Extrusion. The Plastics & Rubber Institute, London 1983. pp. 1 - 3.

7. Chris J. Rauwendal: Two Stage Extruder Screws. The Plastics & Rubber Institute, London 1983. pp. 3 - 7.

8. Peter Lewis: Introduction to Polymers. The Open University Press, London 1984. pp. 38 - 43.

9. Peter Lewis: Advanced Processing. The Open University Press, London 1984. pp. 10 - 15.

10. Vishu Shah: Handbook of Plastics Testing Technology. John Wiley & Sons, New York, 1984. pp. 7 - 17.

11. Edward J Wickson: Handbook of PVC Formulation. John Wiley & Sons, New York 1993. pp. 369 - 375.

12. Modern Plastics encyclopedia Handbook. Macgraw-Hill Incorporation, New York 1994. pp. 70 - 73.

13. R.H. Burgess: Manufacture & Processing of PVC. Applied Science Publishers, London 1992. pp. 221 - 227.

14. Peter Lewis: Polymer Engineering Data Book. The Open University Press, London 1984. pp. 18 - 27.

