Browsing by Author "Ramasinghe, S"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
- item: Conference-AbstractAbnormal activity recognition using spatio-temporal featuresChathuramali, KGM; Ramasinghe, S; Rodrigo, BKRPAbnormal activity detection plays an important role in many areas such as surveillance, military installations, and sports. Existing abnormal activity detectors mostly rely on motion data obtained over a number of frames to characterize abnormality. However, only motion may not be able to capture all forms of abnormality, in particular, poses that do not amount to motion “outliers”. In this paper, we propose two different spatiotemporal descriptors, a silhouette and optic flow based method and a dense trajectory based method which additionally include trajectory shape descriptor, to detect abnormalities. These two descriptors enable us to classify abnormal versus non-abnormal activities using SVM. Comparison with existing methods, using five standard datasets, shows that dense trajectory based method outperforms state-of-the-art results in crowd dataset and silhouette and optic flow based method outperforms others in some datasets.
- item: Conference-AbstractAction recognition by single stream convolutional neural networks : an approach using combined motion and static informationRamasinghe, S; Rodrigo, BKRPWe investigate the problem of automatic action recognition and classification of videos. In this paper, we present a convolutional neural network architecture, which takes both motion and static information as inputs in a single stream. We show that the network is able to treat motion and static information as different feature maps and extract features off them, although stacked together. We trained and tested our network on Youtube dataset. Our network is able to surpass state-of-the-art hand-engineered feature methods. Furthermore, we also studied and compared the effect of providing static information to the network, in the task of action recognition. Our results justify the use of optic flows as the raw information of motion and also show the importance of static information, in the context of action recognition.
- item: Conference-AbstractAction recognition by single stream convolutional neural networks : an approach using combined motion and static informationRamasinghe, S; Rodrigo, RWe investigate the problem of automatic action recognition and classification of videos. In this paper, we present a convolutional neural network architecture, which takes both motion and static information as inputs in a single stream. We show that the network is able to treat motion and static information as different feature maps and extract features off them, although stacked together. We trained and tested our network on Youtube dataset. Our network is able to surpass state-of-the-art hand-engineered feature methods. Furthermore, we also studied and compared the effect of providing static information to the network, in the task of action recognition. Our results justify the use of optic flows as the raw information of motion and also show the importance of static information, in the context of action recognition.
- item: Article-Full-textCombined static and motion features for deep-networks-based activity recognition in videos(IEEE, 2019) Ramasinghe, S; Rajasegaran, J; Jayasundara, V; Ranasinghe, K; Rodrigo, R; Pasqual, AAActivity recognition in videos in a deep-learning setting—or otherwise—uses both static and pre-computed motion components. The method of combining the two components, whilst keeping the burden on the deep network less, still remains uninvestigated. Moreover, it is not clear what the level of contribution of individual components is, and how to control the contribution. In this work, we use a combination of CNNgenerated static features and motion features in the form of motion tubes. We propose three schemas for combining static and motion components: based on a variance ratio, principal components, and Cholesky decomposition. The Cholesky decomposition based method allows the control of contributions. The ratio given by variance analysis of static and motion features match well with the experimental optimal ratio used in the Cholesky decomposition based method. The resulting activity recognition system is better or on par with existing state-of-theart when tested with three popular datasets. The findings also enable us to characterize a dataset with respect to its richness in motion information.
- item: Conference-AbstractRecognition of Badminton strokes using dense trajectoriesRamasinghe, S; Chathuramali, KGM; Rodrigo, BKRPAutomatic stroke recognition of badminton video footages plays an important role in the process of analyzing players and building up statistics. Yet recognizing activities from broadcast videos is a challenging task due to person dependant body postures and blurring of the fast moving body parts. We propose a robust and an accurate approach for badminton stroke recognition using dense trajectories and trajectory aligned HOG features which are calculated inside local bounding boxes around players. A four-class SVM classifier is then used to classify badminton strokes to be either smash, forehand, backhand or other. This approach is robust to noisy backgrounds and provides accurate results for low resolution broadcast videos. Our experiments also reveal that this approach needs relatively fewer training samples for accurate recognition of strokes compared to existing approaches.