Institutional-Repository, University of Moratuwa.  

Recursive least square based estimation of MEMS inertial sensor stochastic models

Show simple item record

dc.contributor.author Abeywardena, DMW
dc.contributor.author Munasinghe, SR
dc.date.accessioned 2017-02-08T10:02:52Z
dc.date.available 2017-02-08T10:02:52Z
dc.identifier.uri http://dl.lib.mrt.ac.lk/handle/123/12366
dc.description.abstract In this paper we first analyze the effects of least square based parameter estimation for a autoregressive stochastic model of inertial sensor errors. We then proceed to develop the recursive least squares (RLS) estimation of the autoregressive model parameters and also discuss a fast update method for recursive least square estimation to reduce the computation complexity. This reduction leads to an efficient online dynamic estimation of inertial sensor error model which can then augment a navigation system based on such sensors. Simulation results and actual inertial sensor data are analyzed and it is shown that the RLS estimate can achieve a 20% reduction in forward prediction error as compared to the non-recursive estimate. en_US
dc.language.iso en en_US
dc.relation.uri 10.1109/ICIAFS.2010.5715699 en_US
dc.title Recursive least square based estimation of MEMS inertial sensor stochastic models en_US
dc.type Conference-Abstract en_US
dc.identifier.faculty Engineering en_US
dc.identifier.department Department of Electronic and Telecommunication Engineering en_US
dc.identifier.year 2010 en_US
dc.identifier.conference 5th International Conference on Information and Automation for Sustainability (ICIAFs - 2010) en_US
dc.identifier.place Colombo en_US
dc.identifier.pgnos pp. 424 - 428 en_US
dc.identifier.email dinuka@ent.mrt .ac.lk en_US
dc.identifier.email rohan@ent.mrt.ac.lk en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record