Abstract:
Prefabrication of houses is a growing industry in Australia. Although prefabrication does not negatively affect the building quality, the potential to provide acceptable indoor environment quality with high energy efficiency is still a topic of argument. Effective passive design strategies are necessary to achieve low-energy buildings with satisfactory indoor environment quality. The building envelope parameters such as materials, openings and shadings highly affect the heat transfer, air exchange and light transmission between outside and indoor environment. Shading, one of the passive envelope design strategies, can reduce cooling energy while improving the indoor thermal comfort. However, the effects on daylighting and thermal performance depend on the climate conditions, and the size, location and orientation of the shading device. The performance benchmarks of prefabricated houses have not been well documented in the literature. The aim of this paper is to investigate the effects of shading design options on thermal and daylighting performance of a typical modular house in Melbourne. EnergyPlus and Radiant simulation engines have been employed in this study. By quantifying the performance, the appropriate shading design for the typical modular house in Melbourne could be identified.