Institutional-Repository, University of Moratuwa.  

A machine learning approach for nilm based on superimposed current profiles

Show simple item record

dc.contributor.author Abeykoon, AMHS
dc.contributor.author Perera, APS
dc.contributor.author Sanjeewika, RK
dc.contributor.author Matharage, MDNV
dc.contributor.author Abeysinghe, AP
dc.contributor.editor Weeraddana, C
dc.contributor.editor Edussooriya, CUS
dc.contributor.editor Abeysooriya, RP
dc.date.accessioned 2022-08-05T04:31:35Z
dc.date.available 2022-08-05T04:31:35Z
dc.date.issued 2020-07
dc.identifier.citation ******* en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/18515
dc.description.abstract This research focuses on identifying a new implementation of a machine learning approach for Nonintrusive load monitoring (NILM). We mathematically superimpose current profiles of individual appliances and compare against the actual combinational current profiles. This simple yet effective method is tested on combinations of 6 household devices in a typical low voltage residential installation and the high accuracy of correct identification confirms the proposed method is feasible. The proposed method eases the burden of the training phase which is considered as an inherent limitation of all supervised deep learning NILM models. We deploy the method on a Raspberry Pi 3 providing a solution to increase the scalability of NILM en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.uri https://ieeexplore.ieee.org/document/9185203 en_US
dc.subject Power signature analysis en_US
dc.subject Machine learning en_US
dc.subject NILM en_US
dc.subject Load identification en_US
dc.title A machine learning approach for nilm based on superimposed current profiles en_US
dc.type Conference-Full-text en_US
dc.identifier.faculty Engineering en_US
dc.identifier.department Engineering Research Unit, University of Moratuwa en_US
dc.identifier.year 2020 en_US
dc.identifier.place Moratuwa, Sri Lanka en_US
dc.identifier.pgnos pp. 584-589 en_US
dc.identifier.proceeding Proceedings of Moratuwa Engineering Research Conference 2020 en_US
dc.identifier.email harsha@uom.lk en_US
dc.identifier.email paveenperera@gmail.com en_US
dc.identifier.email paveenperera@gmail.com en_US
dc.identifier.email asitha169gmail.com en_US
dc.identifier.email nisalvm@gmail.com en_US
dc.identifier.doi 10.1109/MERCon50084.2020.9185203 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record