Institutional-Repository, University of Moratuwa.  

A retinex based gan pipeline to utilize paired and unpaired datasets for enhancing low light

Show simple item record

dc.contributor.author Weligampola, H
dc.contributor.author Jayatilaka, G
dc.contributor.author Sritharan, S
dc.contributor.author Godaliyadda, R
dc.contributor.author Ekanayaka, P
dc.contributor.author Ragel, R
dc.contributor.author Herath, V
dc.contributor.editor Weeraddana, C
dc.contributor.editor Edussooriya, CUS
dc.contributor.editor Abeysooriya, RP
dc.date.accessioned 2022-08-10T03:44:49Z
dc.date.available 2022-08-10T03:44:49Z
dc.date.issued 2020-07
dc.identifier.citation H. Weligampola et al., "A Retinex based GAN Pipeline to Utilize Paired and Unpaired Datasets for Enhancing Low Light Images," 2020 Moratuwa Engineering Research Conference (MERCon), 2020, pp. 224-229, doi: 10.1109/MERCon50084.2020.9185373. en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/18589
dc.description.abstract Low light image enhancement is an important challenge for the development of robust computer vision algorithms. The machine learning approaches to this have been either unsupervised, supervised based on paired dataset or supervised based on unpaired dataset. This paper presents a novel deep learning pipeline that can learn from both paired and unpaired datasets. Convolution Neural Networks (CNNs) that are optimized to minimize standard loss, and Generative Adversarial Networks (GANs) that are optimized to minimize the adversarial loss are used to achieve different steps of the low light image enhancement process. Cycle consistency loss and a patched discriminator are utilized to further improve the performance. The paper also analyses the functionality and the performance of different components, hidden layers, and the entire pipeline. en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.uri https://ieeexplore.ieee.org/document/9185373 en_US
dc.subject low-light image enhancement en_US
dc.subject retinex theory en_US
dc.subject generative adversarial networks en_US
dc.subject cycle consistency en_US
dc.title A retinex based gan pipeline to utilize paired and unpaired datasets for enhancing low light en_US
dc.type Conference-Full-text en_US
dc.identifier.faculty Engineering en_US
dc.identifier.department Engineering Research Unit, University of Moratuwa en_US
dc.identifier.year 2020 en_US
dc.identifier.conference Moratuwa Engineering Research Conference 2020 en_US
dc.identifier.place Moratuwa, Sri Lanka en_US
dc.identifier.pgnos pp. 224-229 en_US
dc.identifier.proceeding Proceedings of Moratuwa Engineering Research Conference 2020 en_US
dc.identifier.email harshana.w@eng.pdn.ac.lk en_US
dc.identifier.email gihanjayatilka@eng.pdn.ac.lk en_US
dc.identifier.email suren.sri@eng.pdn.ac.lk en_US
dc.identifier.email roshangodd@eng.pdn.ac.lk en_US
dc.identifier.email mpb.ekanayake@eng.pdn.ac.lk en_US
dc.identifier.email roshanr@eng.pdn.ac.lk en_US
dc.identifier.email vijithag@eng.pdn.ac.lk en_US
dc.identifier.doi 10.1109/MERCon50084.2020.9185373 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record