dc.contributor.author |
Weeraddana, DM |
|
dc.contributor.author |
Kulasekere, C |
|
dc.contributor.author |
Walgama, KS |
|
dc.date.accessioned |
2023-02-27T03:45:15Z |
|
dc.date.available |
2023-02-27T03:45:15Z |
|
dc.date.issued |
2015 |
|
dc.identifier.citation |
Weeraddana, D. M., Kulasekere, C., & Walgama, K. S. (2015). Dempster–Shafer Information Filtering Framework: Temporal and Spatio-Temporal Evidence Filtering. IEEE Sensors Journal, 15(10), 5576–5583. https://doi.org/10.1109/JSEN.2015.2442153 |
en_US |
dc.identifier.issn |
1530-437X |
en_US |
dc.identifier.uri |
http://dl.lib.uom.lk/handle/123/20621 |
|
dc.description.abstract |
This paper presents an information processing
framework for Distributed Sensor Networks (DSNs). The framework
is capable of directly processing temporally and spatially
distributed multi-modality sensor data to extract information
buried in the noise clutter. Moreover, we introduce distributed
algorithms to implement Spatio-Temporal filtering applications
in grid sensor networks within the context of the framework. The
proposed framework is based on the belief notions in Dempster-
Shafer (DS) evidence theory and Evidence Filtering method.
Further analysis is done by exploiting a fire propagation scenario
when high noise is present in the sensed data. We compare
intuitively appealing results against Dempster-Shafer fusion
method to grant further credence to the proposed framework. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
IEEE |
en_US |
dc.subject |
Dempster-Shafer belief vectors |
en_US |
dc.subject |
Dempster-Shafer formalism |
en_US |
dc.subject |
Evidence filtering |
en_US |
dc.subject |
Multi modality sensor fusion |
en_US |
dc.subject |
Severity of emergency |
en_US |
dc.subject |
Wireless Sensor Network |
en_US |
dc.title |
Dempster-Shafer Information Filtering Framework: Temporal and Spatio-Temporal Evidence Filtering |
en_US |
dc.type |
Article-Full-text |
en_US |
dc.identifier.year |
2015 |
en_US |
dc.identifier.journal |
IEEE Sensors Journal |
en_US |
dc.identifier.issue |
10 |
en_US |
dc.identifier.volume |
15 |
en_US |
dc.identifier.database |
IEEE Xplore |
en_US |
dc.identifier.pgnos |
5576 - 5583 |
en_US |
dc.identifier.doi |
https://doi.org/10.1109/JSEN.2015.2442153 |
en_US |