dc.contributor.author |
Dharmawansa1, P |
|
dc.date.accessioned |
2023-03-01T03:20:22Z |
|
dc.date.available |
2023-03-01T03:20:22Z |
|
dc.date.issued |
2016 |
|
dc.identifier.citation |
Dharmawansa, P. (2016). Some new results on the eigenvalues of complex non-central Wishart matrices with a rank-1 mean. Journal of Multivariate Analysis, 149, 30–53. https://doi.org/10.1016/j.jmva.2016.03.003 |
en_US |
dc.identifier.issn |
0047-259X |
en_US |
dc.identifier.uri |
http://dl.lib.uom.lk/handle/123/20628 |
|
dc.description.abstract |
LetWbe an n×n complex non-centralWishart matrix with m (≥ n) degrees of
freedom and a rank-1 mean. In this paper, we consider three problems related
to the eigenvalues of W. To be specific, we derive a new expression for the
cumulative distribution function (c.d.f.) of the minimum eigenvalue (λmin) of
W. The c.d.f. is expressed as the determinant of a square matrix, the size of
which depends only on the difference m−n. This further facilitates the analysis
of the microscopic limit of the minimum eigenvalue. The microscopic limit
takes the form of the determinant of a square matrix with its entries expressed
in terms of the modified Bessel functions of the first kind. We also develop a
moment generating function based approach to derive the probability density
function of the random variable tr(W)/λmin, where tr(·) denotes the trace of
a square matrix. Moreover, we establish that, as m, n → ∞ with m − n fixed,
tr(W)/λmin scales like n3. Finally, we find the average of the reciprocal of the
characteristic polynomial det[zIn +W], | arg z| < π, where In and det[·] denote
the identity matrix of size n and the determinant, respectively. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Academic Press Inc |
en_US |
dc.subject |
Demmel condition number |
en_US |
dc.subject |
Eigenvalues |
en_US |
dc.subject |
Hypergeometric function of two matrix arguments |
en_US |
dc.subject |
Non-central Wishart distribution |
en_US |
dc.subject |
Random matrix |
en_US |
dc.title |
Some new results on the eigenvalues of complex non-central Wishart matrices with a rank-1 mean |
en_US |
dc.type |
Article-Full-text |
en_US |
dc.identifier.year |
2016 |
en_US |
dc.identifier.journal |
Journal of Multivariate Analysis |
en_US |
dc.identifier.volume |
149 |
en_US |
dc.identifier.database |
ScienceDirect |
en_US |
dc.identifier.pgnos |
30-53 |
en_US |
dc.identifier.doi |
https://doi.org/10.1016/j.jmva.2016.03.003 |
en_US |