Institutional-Repository, University of Moratuwa.  

Rank-1 Matrix Approximation-Based Channel Estimation for Intelligent Reflecting Surface-Aided Multi-User MISO Communications

Show simple item record

dc.date.accessioned 2023-05-22T08:52:12Z
dc.date.available 2023-05-22T08:52:12Z
dc.date.issued 2021
dc.identifier.citation Sumanthiran, S., Kudathanthirige, D., Hemachandra, K. T., Samarasinghe, T., & Baduge, G. A. (2021). Rank-1 Matrix Approximation-Based Channel Estimation for Intelligent Reflecting Surface-Aided Multi-User MISO Communications. IEEE Communications Letters, 25(8), 2589–2593. https://doi.org/10.1109/LCOMM.2021.3081356 en_US
dc.identifier.issn 1089-7798 en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/21060
dc.description.abstract The acquisition of channel state information is an essential step in enabling intelligent reflecting surfaces (IRSs) for wireless communications. In this letter, we introduce a novel procedure to estimate the cascaded channel between the base station (BS), IRS, and users in a multi-user multiple-input singleoutput system. The common BS-IRS channel, over which all users transmit, is leveraged to decompose the cascaded channel into a series of rank-1 matrices. Low-rank matrix recovery methods are utilized to improve upon the linear minimum mean-squared error estimate of the cascaded channel. A theoretical upper bound for the mean-square error (MSE) of the proposed estimator is derived. Numerical results reveal that the proposed techniques outperform the existing counterparts in terms of the MSE and scale with the number of BS antennas. en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.subject IRS en_US
dc.subject channel estimation en_US
dc.title Rank-1 Matrix Approximation-Based Channel Estimation for Intelligent Reflecting Surface-Aided Multi-User MISO Communications en_US
dc.type Article-Full-text en_US
dc.identifier.year 2021 en_US
dc.identifier.journal IEEE Communications Letters en_US
dc.identifier.issue 8 en_US
dc.identifier.volume 25 en_US
dc.identifier.database IEEE Xplore en_US
dc.identifier.pgnos 2589 - 2593 en_US
dc.identifier.doi 10.1109/LCOMM.2021.3081356 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record