Institutional-Repository, University of Moratuwa.  

In situ 4D tomography image analysis framework to follow sintering within 3D-printed glass scaffolds

Show simple item record

dc.contributor.author Kondarage, AI
dc.contributor.author Poologasundarampillai, G
dc.contributor.author Nommeots-Nomm, A
dc.contributor.author Lee, PD
dc.contributor.author Lalitharatne, TD
dc.contributor.author Nanayakkara, ND
dc.contributor.author Jones, JR
dc.contributor.author Karunaratne, A
dc.date.accessioned 2023-06-19T09:08:47Z
dc.date.available 2023-06-19T09:08:47Z
dc.date.issued 2022
dc.identifier.citation Kondarage, A. I., Poologasundarampillai, G., Nommeots-Nomm, A., Lee, P. D., Lalitharatne, T. D., Nanayakkara, N. D., Jones, J. R., & Karunaratne, A. (2022). In situ 4D tomography image analysis framework to follow sintering within 3D-printed glass scaffolds. Journal of the American Ceramic Society, 105(3), 1671–1684. https://doi.org/10.1111/jace.18182 en_US
dc.identifier.issn 1551-2916 en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/21120
dc.description.abstract We propose a novel image analysis framework to automate analysis of X-ray microtomography images of sintering ceramics and glasses, using open-source toolkits and machine learning. Additive manufacturing (AM) of glasses and ceramics usually requires sintering of green bodies. Sintering causes shrinkage, which presents a challenge for controlling the metrology of the final architecture. Therefore, being able to monitor sintering in 3D over time (termed 4D) is important when developing new porous ceramics or glasses. Synchrotron X-ray tomographic imaging allows in situ, real-time capture of the sintering process at both micro and macro scales using a furnace rig, facilitating 4D quantitative analysis of the process. The proposed image analysis framework is capable of tracking and quantifying the densification of glass or ceramic particles within multiple volumes of interest (VOIs) along with structural changes over time using 4D image data. The framework is demonstrated by 4D quantitative analysis of bioactive glass ICIE16 within a 3D-printed scaffold. Here, densification of glass particles within 3 VOIs were tracked and quantified along with diameter change of struts and interstrut pore size over the 3D image series, delivering new insights on the sintering mechanism of ICIE16 bioactive glass particles in both micro and macro scales. en_US
dc.language.iso en_US en_US
dc.publisher Wiley-Blackwell on behalf of the American Ceramic Society en_US
dc.subject bioactive glass en_US
dc.subject bioceramics en_US
dc.subject image analysis en_US
dc.subject sintering en_US
dc.subject X-ray computed tomography en_US
dc.title In situ 4D tomography image analysis framework to follow sintering within 3D-printed glass scaffolds en_US
dc.type Article-Full-text en_US
dc.identifier.year 2022 en_US
dc.identifier.journal Jornal of the American Ceramic Society en_US
dc.identifier.issue 03 en_US
dc.identifier.volume 105 en_US
dc.identifier.database Wiley Online Library en_US
dc.identifier.pgnos 1671-1684 en_US
dc.identifier.doi https://doi.org/10.1111/jace.18182 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record