dc.contributor.author |
Ranathunga, S. |
|
dc.contributor.author |
Lee, E.-S. A |
|
dc.contributor.author |
Prifti Skenduli, M |
|
dc.contributor.author |
Shekhar, R |
|
dc.contributor.author |
Alam, M. |
|
dc.contributor.author |
Kaur, R. |
|
dc.date.accessioned |
2023-12-01T06:17:32Z |
|
dc.date.available |
2023-12-01T06:17:32Z |
|
dc.date.issued |
2023 |
|
dc.identifier.citation |
Ranathunga, S., Lee, E.-S. A., Prifti Skenduli, M., Shekhar, R., Alam, M., & Kaur, R. (2023). Neural Machine Translation for Low-resource Languages: A Survey. ACM Computing Surveys, 55(11), 229 (1-37). https://doi.org/10.1145/3567592 |
en_US |
dc.identifier.issn |
0360-0300 |
en_US |
dc.identifier.uri |
http://dl.lib.uom.lk/handle/123/21868 |
|
dc.description.abstract |
Neural Machine Translation (NMT) has seen tremendous growth in the last ten years since the early 2000s and has already entered a mature phase. While considered the most widely used solution for Machine Translation, its performance on low-resource language pairs remains sub-optimal compared to the high-resource counterparts due to the unavailability of large parallel corpora. Therefore, the implementation of NMT techniques for low-resource language pairs has been receiving the spotlight recently, thus leading to substantial research on this topic. This article presents a detailed survey of research advancements in low-resource language NMT (LRL-NMT) and quantitative analysis to identify the most popular techniques. We provide guidelines to select the possible NMT technique for a given LRL data setting based on our findings. We also present a holistic view of the LRL-NMT research landscape and provide recommendations to enhance the research efforts further. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Association for Computing Machinery |
en_US |
dc.subject |
Low-Resource Languages |
en_US |
dc.subject |
Unsupervised NMT |
en_US |
dc.subject |
Neural Machine Translation |
en_US |
dc.subject |
Semi-supervised NMT |
en_US |
dc.subject |
Multilingual NMT |
en_US |
dc.subject |
Transfer Learning |
en_US |
dc.subject |
Data Augmentation |
en_US |
dc.subject |
Zero-shot Translation |
en_US |
dc.subject |
Pivoting |
en_US |
dc.title |
Neural machine translation for low-resource languages: A Survey |
en_US |
dc.type |
Article-Full-text |
en_US |
dc.identifier.year |
2023 |
en_US |
dc.identifier.journal |
ACM Computing Surveys |
en_US |
dc.identifier.issue |
11 |
en_US |
dc.identifier.volume |
55 |
en_US |
dc.identifier.database |
ACM Digital Library |
en_US |
dc.identifier.pgnos |
229 (1-37) |
en_US |
dc.identifier.doi |
https://doi.org/10.1145/3567592 |
en_US |