Institutional-Repository, University of Moratuwa.  

Federated learning for improved automatic modulation classification: data heterogeneity and low SNR accuracy

Show simple item record

dc.contributor.author Siriwardana, GK
dc.contributor.author Jayawardhana, HD
dc.contributor.author Bandara, WU
dc.contributor.author Atapattu, S
dc.contributor.author Herath, VR
dc.contributor.editor Abeysooriya, R
dc.contributor.editor Adikariwattage, V
dc.contributor.editor Hemachandra, K
dc.date.accessioned 2024-03-11T03:14:49Z
dc.date.available 2024-03-11T03:14:49Z
dc.date.issued 2023-12-09
dc.identifier.citation G. K. Siriwardana, H. D. Jayawardhana, W. U. Bandara, S. Atapattu and V. R. Herath, "Federated Learning for Improved Automatic Modulation Classification: Data Heterogeneity and Low SNR Accuracy," 2023 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2023, pp. 462-467, doi: 10.1109/MERCon60487.2023.10355464. en_US
dc.identifier.uri http://dl.lib.uom.lk/handle/123/22288
dc.description.abstract This research introduces novel federated learning (FL)-based methods, namely FedAvgAMC, FedPerAMC, and FedAvgAMCAug, to enhance automatic modulation classification (AMC) in communication systems. By addressing data heterogeneity, incorporating higher-order modulation schemes, and exploring personalized models for clients, these methods overcome challenges associated with centralized learning and data leakage. Simulation results demonstrate significant improvements in accuracy, particularly at low and moderate signal-to-noise ratios (SNRs). FedAvgAMCAug, a privacy-preserving method, achieves superior performance, outperforming CentAMC by 18% in accuracy at an SNR of 5 dB and consistently surpassing existing learning techniques across all clients and SNR values. This research highlights the potential of federated learning to enhance AMC accuracy in real-world scenarios, paving the way for future optimizations and exploration of techniques to address data uncertainty for even more robust performance. en_US
dc.language.iso en en_US
dc.publisher IEEE en_US
dc.relation.uri https://ieeexplore.ieee.org/document/10355464 en_US
dc.subject Automatic modulation classification (AMC) en_US
dc.subject federated learning (FL) en_US
dc.subject data heterogeneity en_US
dc.subject data augmentation en_US
dc.title Federated learning for improved automatic modulation classification: data heterogeneity and low SNR accuracy en_US
dc.type Conference-Full-text en_US
dc.identifier.faculty Engineering en_US
dc.identifier.department Engineering Research Unit, University of Moratuwa en_US
dc.identifier.year 2023 en_US
dc.identifier.conference Moratuwa Engineering Research Conference 2023 en_US
dc.identifier.place Katubedda en_US
dc.identifier.pgnos pp. 462-467 en_US
dc.identifier.proceeding Proceedings of Moratuwa Engineering Research Conference 2023 en_US
dc.identifier.email e16355@eng.pdn.ac.lk en_US
dc.identifier.email e16158@eng.pdn.ac.lk en_US
dc.identifier.email saman.atapattu@rmit.edu.au en_US
dc.identifier.email e16040@eng.pdn.ac.lk en_US
dc.identifier.email vijitha@eng.pdn.ac.lk en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record