Roy's largest root under rank-one perturbations: The complex valued case and applications

dc.contributor.authorDharmawansa, P
dc.contributor.authorNadler, B
dc.contributor.authorShwartz, O
dc.date.accessioned2023-03-29T05:10:45Z
dc.date.available2023-03-29T05:10:45Z
dc.date.issued2019
dc.description.abstractThe largest eigenvalue of a single or a double Wishart matrix, both known as Roy’s largest root, plays an important role in a variety of applications. Recently, via a small noise perturbation approach with fixed dimension and degrees of freedom, Johnstone and Nadler derived simple yet accurate approximations to its distribution in the real valued case, under a rank-one alternative. In this paper, we extend their results to the complex valued case for five common single matrix and double matrix settings. In addition, we study the finite sample distribution of the leading eigenvector. We present the utility of our results in several signal detection and communication applications, and illustrate their accuracy via simulations.en_US
dc.identifier.citationDharmawansa, P., Nadler, B., & Shwartz, O. (2019). Roy’s largest root under rank-one perturbations: The complex valued case and applications. Journal of Multivariate Analysis, 174, 104524. https://doi.org/10.1016/j.jmva.2019.05.009en_US
dc.identifier.databaseScienceDirecten_US
dc.identifier.doihttps://doi.org/10.1016/j.jmva.2019.05.009en_US
dc.identifier.issn0047-259Xen_US
dc.identifier.journalJournal of Multivariate Analysisen_US
dc.identifier.pgnos104524en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/20828
dc.identifier.volume174en_US
dc.identifier.year2019en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectComplex Wishart distributionen_US
dc.subjectRank-one perturbationen_US
dc.subjectRoy’s largest rooten_US
dc.subjectSignal detection in noiseen_US
dc.titleRoy's largest root under rank-one perturbations: The complex valued case and applicationsen_US
dc.typeArticle-Full-texten_US

Files