A simplified epilepsy classification technique utilizing svd

dc.contributor.authorPrabhakar, SK
dc.contributor.authorRajaguru, H
dc.contributor.editorJayasekara, AGBP
dc.contributor.editorAmarasinghe, YWR
dc.date.accessioned2022-11-17T09:33:42Z
dc.date.available2022-11-17T09:33:42Z
dc.date.issued2016-04
dc.description.abstractEEG signals represent both the brain function and also the status of the whole body, i.e. a simple action as blinking the eyes introduces oscillation in the EEG records. The EEG is a direct way to measure neural activities and it is important in the area of biomedical research to understand and develop new processing techniques. EEG signal pre-processing and postprocessing methods include EEG signal modeling, segmentation, filtering and de-noising, and EEG processing methods which consist of two tasks, namely, feature extraction/dimensionality reduction and classification. In this paper, the performance analysis of Independent Component Analysis (ICA) is considered as a dimensionality reduction technique followed by Singular Value Decomposition (SVD) as a Post Classifier for the Classification of Epilepsy Risk Levels from EEG Signals. The analysis is done in terms of bench mark parameters such as Performance Index (PI), Quality Values (QV), Sensitivity, Specificity and Time Delay.en_US
dc.identifier.citation****en_US
dc.identifier.conferenceERU Symposium 2016en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.emailsunilprabhakar22@gmail.comen_US
dc.identifier.emailharikumarrajaguru@gmail.comen_US
dc.identifier.facultyEngineeringen_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of the ERU Symposium 2016en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/19550
dc.identifier.year2016en_US
dc.language.isoenen_US
dc.publisherEngineering Research Unit, Faculty of Engiennring, University of Moratuwaen_US
dc.subjectEEGen_US
dc.subjectICAen_US
dc.subjectSVDen_US
dc.subjectPIen_US
dc.subjectQVen_US
dc.titleA simplified epilepsy classification technique utilizing svden_US
dc.typeConference-Abstracten_US

Files

Collections