Sentiment analysis of Sinhala news comments using sentence-state lstm networks

dc.contributor.authorDemotte, P
dc.contributor.authorSenevirathne, L
dc.contributor.authorKarunanayake, B
dc.contributor.authorMunasinghe, U
dc.contributor.authorRanathunga, S
dc.contributor.editorWeeraddana, C
dc.contributor.editorEdussooriya, CUS
dc.contributor.editorAbeysooriya, RP
dc.date.accessioned2022-08-09T09:19:29Z
dc.date.available2022-08-09T09:19:29Z
dc.date.issued2020-07
dc.description.abstractDifferent types of deep learning based sentiment classification techniques have been introduced for sentiment analysis, and for Natural Language Processing, in general. However, Sinhala, which is a low resourced, yet morphologically rich language, has not experienced these recent advancements. In particular, for sentiment analysis, there is only one research that used deep learning techniques, and that also gave sub-optimal results. In this paper, we present the use of a novel state-of-theart deep learning technique called sentence state long short-term memory network for Sinhala sentiment classification. On a binary sentiment classification task, this method outperforms both the previously reported statistical machine learning algorithms and deep learning algorithms.en_US
dc.identifier.citationP. Demotte, L. Senevirathne, B. Karunanayake, U. Munasinghe and S. Ranathunga, "Sentiment Analysis of Sinhala News Comments using Sentence-State LSTM Networks," 2020 Moratuwa Engineering Research Conference (MERCon), 2020, pp. 283-288, doi: 10.1109/MERCon50084.2020.9185327.en_US
dc.identifier.conferenceMoratuwa Engineering Research Conference 2020en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.doi10.1109/MERCon50084.2020.9185327en_US
dc.identifier.emailpiyumalanthony.16@cse.mrt.ac.lken_US
dc.identifier.emaillahiru.16@cse.mrt.ac.lken_US
dc.identifier.emailbinod.16@cse.mrt.ac.lken_US
dc.identifier.emailudyogi.16@cse.mrt.ac.lken_US
dc.identifier.emailsurangika@cse.mrt.ac.lken_US
dc.identifier.facultyEngineeringen_US
dc.identifier.pgnospp. 283-288en_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of Moratuwa Engineering Research Conference 2020en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/18579
dc.identifier.year2020en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.urihttps://ieeexplore.ieee.org/document/9185327en_US
dc.subjectSinhalaen_US
dc.subjectsentiment analysisen_US
dc.subjects-lstmen_US
dc.subjectnatural language processingen_US
dc.subjectdeep learningen_US
dc.titleSentiment analysis of Sinhala news comments using sentence-state lstm networksen_US
dc.typeConference-Full-texten_US

Files

Collections