Short-term traffic prediction with visitor location registry data

dc.contributor.authorDilhasha, F
dc.contributor.authorFernando, K
dc.contributor.authorGodahewa, R
dc.contributor.authorOssen, S
dc.contributor.authorPerara, AS
dc.contributor.authorWalpola, M
dc.contributor.editorJayasekara, AGBP
dc.contributor.editorAmarasinghe, YWR
dc.date.accessioned2022-11-17T09:31:28Z
dc.date.available2022-11-17T09:31:28Z
dc.date.issued2016-04
dc.description.abstractIncreasing road traffic is a major issue in current world. In this paper, we propose a set of prediction models that can perform short term traffic prediction for a given road segment. These prediction models have been developed using Neural Networks (NN), Bayesian Networks, Hidden Markov Models, variations of Regression and ensemble approaches of these models. CCTV records are used for validation of the results based on which a maximum accuracy of 85% was achieved.en_US
dc.identifier.citation****en_US
dc.identifier.conferenceERU Symposium 2016en_US
dc.identifier.departmentEngineering Research Unit, University of Moratuwaen_US
dc.identifier.facultyEngineeringen_US
dc.identifier.placeMoratuwa, Sri Lankaen_US
dc.identifier.proceedingProceedings of the ERU Symposium 2016en_US
dc.identifier.urihttp://dl.lib.uom.lk/handle/123/19549
dc.identifier.year2016en_US
dc.language.isoenen_US
dc.publisherEngineering Research Unit, Faculty of Engiennring, University of Moratuwaen_US
dc.subjectVLRen_US
dc.subjectTraffic Predictionen_US
dc.subjectNNen_US
dc.subjectBCNNen_US
dc.subjectHMMen_US
dc.subjectRegressionen_US
dc.subjectEnsemble Modelsen_US
dc.titleShort-term traffic prediction with visitor location registry dataen_US
dc.typeConference-Abstracten_US

Files

Collections