49 References [1] Yoshida, Y., Hirao, T., Iwata, T., Nagata, M. and Matsumoto, Y. (2011). Transfer learning for multiple-domain sentiment analysis — identifying domain dependent/independent word polarity. [online] Dl.acm.org. Available at: https://dl.acm.org/citation.cfm?id=2900627 [Accessed 25 Jan. 2019]. [2] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10):1345–1359 [3] Pan, Sinno Jialin, Xiaochuan Ni, Jian-Tao Sun, Qiang Yang, and Zheng Chen. Cross-domain sentiment classification via spectral feature alignment. in Proceedings of International Conference on World Wide Web (WWW-2010). 2010. [4] B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2(1-2):1–135, 2008. [5] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 79–86, 2002. [6] Roark and M. Bacchiani. 2003. Supervised and unsupervised PCFG adaptation to novel domains. In NAACL-HLT, pages 126–133. [7] Daum´e III and D. Marcu. 2006. Domain adaptation for statistical classifiers. Journal of Artificial Intelligence Research, 26(1):101–126. [8] R.K. Ando and T. Zhang. 2005. A framework for learning predictive structures from multiple tasks and unlabeled data. The Journal of Machine Learning Research, 6:1817–1853. [9] J. Blitzer, M. Dredze, and F. Pereira. 2007. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL, page 440–447. [10] John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation with structural correspondence learning. In Empirical Methods in Natural Language Processing (EMNLP). [11] H. Daum´e. 2007. Frustratingly easy domain adaptation. In ACL, pages 256–263. 50 [12] W. Dai, Y. Chen, G.R. Xue, Q. Yang, and Y. Yu. 2008. Translated learning: Transfer learning across different feature spaces. In NIPS, pages 353–360. [13] N. Bel, C. Koster, and M. Villegas. Cross-lingual text categorization. In ECDL, 2003. [14] W. Dai, O. Jin, G.R. Xue, Q. Yang, and Y. Yu. 2009. Eigentransfer: a unified framework for transfer learning. In ICML, pages 193–200. [15] S. Thrun and L. Pratt, Eds., Learning to learn. Norwell, MA, USA: Kluwer Academic Publishers, 1998. [16] Q. Wu, S. Tan, and X. Cheng. 2009. Graph ranking for sentiment transfer. In ACL- IJCNLP, pages 317–320. [17] Q. Wu, S. Tan, X. Cheng, and M. Duan. 2010. MIEA: a Mutual Iterative Enhancement Approach for Cross-Domain Sentiment Classification. In COLING, page 1327-1335. [18] C.W. Seah, I. Tsang, Y.S. Ong, and K.K. Lee. 2010. Predictive Distribution Matching SVM for Multi-domain Learning. In ECML-PKDD, pages 231–247. [19] Guerra, P., Veloso, A., Meira Jr., W., Almeida, V.: From bias to opinion: A transfer- learning approach to real-time sentiment analysis. In: Proceedings of the 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD (2011). [20] Q. You, J. Luo, H. Jin, J. Yang, Robust image sentiment analysis using progressively trained and domain transferred deep networks, arXivpreprint arXiv:1509.06041. [21] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment classification: A deep learning approach. In ICML, 513–520, 2011. [22] Chinchung Chang and Chinjen Lin. 2001. LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm. [23] Thorsten Joachims. 1999. Transductive inference for text classification using support vector machines. In Proceedings of ICML. [24] Bruzzone, L., Marconcini, M.: Domain adaptation problems: A dasvm classification technique and a circular validation strategy. IEEE Trans. on PAMI 32(5), 770–787 (2010). 51 [25] Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR 12, 2399–2434 (2006). [26] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41:391–407, 1990. [27] Danushka Bollegala, David Weir, and John Carroll. 2011. Using multiple sources to construct a sentiment sensitive thesaurus for cross-domain sentiment classification. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 132–141, Portland, Oregon. ACL. [28] Rajesh, M., and J. M. Gnanasekar. "Annoyed Realm Outlook Taxonomy Using Twin Transfer Learning" International Journal of Pure and Applied Mathematics, 116.21 (2017) 547- 558. [29] Alam, F.; Ofli, F.; and Imran, M. 2018. Crisismmd: Multimodal twitter datasets from natural disasters. In Twelfth International AAAI Conference on Web and Social Media. [30] Neha Singh, Nirmalya Roy, Aryya Gangopadhyay. “Localized Flood DetectionWith Minimal Labeled Social Media Data Using Transfer Learning”. [31] Meysam Asgari-Chenaghlu, Mohammad-Reza Feizi-Derakhshi, Leili farzinvash, Mohammad-Ali Balafar, Cina Motamed. TopicBERT: A Transformer transfer learning based memory-graph approach for multimodal streaming social media topic detection [32] Senevirathne, L., Demotte, P., Karunanayake, B., Udyogi, M. and Ranathunga, S., 2021. Sentiment Analysis of Sinhala News Comments using Sentence-State LSTM Networks. [online] Ieeexplore.ieee.org. Available at: [Accessed 6 April 2021]. [33] Isuru Udara Liyanage. 2018. Sentiment Analysis of Sinhala News Comments. (2018). Unpublished. [34] Nishantha Medagoda. 2016. Sentiment Analysis on Morphologically Rich Languages: An Artificial Neural Network (ANN) Approach. In Artificial Neural Network Modelling. Springer, 377–393. [35] Nishantha Medagoda. 2017. Framework for Sentiment Classification for Morphologically Rich Languages: A Case Study for Sinhala. Ph.D. Dissertation. Auckland University of Technology 52 [36] PDT Chathuranga, SAS Lorensuhewa, and MAL Kalyani. 2019. Sinhala Sentiment Analysis using Corpus based Sentiment Lexicon. In International Conference on Advances in ICT for Emerging Regions (ICTer), Vol. 1. 7. [37] Nafissa Yussupova, Diana Bogdanova. 2012. Applying of Sentiment Analysis for Texts in Russian Based on Machine Learning Approach. [38] Muhammad Haroon Shakeel, Safi Faizullah, Turki Alghamidi , Imdadullah Khan. 2019. Language Independent Sentiment Analysis. [39] Joshi, Aditya, A. R. Balamurali, and Pushpak Bhattacharyya. "A fall-back strategy for sentiment analysis in hindi: a case study."Proceedings of the 8th ICON (2010). [40] Bakliwal, Akshat, Piyush Arora, and Vasudeva Varma. "Hindi subjective lexicon: A lexical resource for hindi polarity classification." In Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC), pp. 1189- 1196. 2012 [41] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014. [42] Enkhbold Bataa , Joshua Wu . 2019. “An Investigation of Transfer Learning-Based Sentiment Analysis in Japanese [43] Marco Pota, Mirko Ventura, Rosario Catelli, and Massimo Esposito. 2020. An Effective BERT-Based Pipeline for Twitter Sentiment Analysis: A Case Study in Italian [44] Abrhalei Frezghi Tela, 2020. Sentiment Analysis for Low-Resource Language: The Case of Tigrinya [45] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre- training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. [46] http://mccormickml.com/2019/07/22/BERT-fine-tuning/] 53 [47] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. [48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc [49] Feng, F., Yang, Y., Cer, D., Arivazhagan, N., and Wang, W. (2020). Language-agnostic bert sentence embedding. A [50] Quoc Thai Nguyen, Thoai Linh Nguyen, Ngoc Hoang Luong, and Quoc Hung Ngo. Fine- Tuning BERT for Sentiment Analysis of Vietnamese Reviews, 2020 - ieeexplore.ieee.org [51] Soroush Karimi, Fatemeh Sadat Shahrabadi. 2019. Sentiment analysis using BERT (pre-training language representations) and Deep Learning on Persian texts. [52] Alduailej, A., Alothaim, A. AraXLNet: pre-trained language model for sentiment analysis of Arabic. J Big Data 9, 72 (2022). https://doi.org/10.1186/s40537-022-00625-z [53] Tsuruoka Y. Deep learning and natural language processing. Brain Nerve 2022;71:45–55 [54] https://github.com/ysenarath/sinling [55]Matej Ulˇcar and Marko Robnik-Sikonja. High quality elmo embeddings ˇ for seven less-resourced languages. In Proceedings of The 12th Language Resources and Evaluation Conference, pages 4731–4738, Marseille, France, May 2020. European Language Resources Association.