175 8 BIBLIOGRAPHY Al-Tamimi, N. A. M., Fadzil, S. F. S., & Harun, W. M. W. (2011). The Effects of Orientation , Ventilation , and Varied WWR on the Thermal Performance of Residential Rooms in the Tropics. Journal of Sustainable Development, 4(2), 142–149. https://doi.org/10.5539/jsd.v4n2p142 Alghoul, S. K., Rijabo, H. G., & Mashena, M. E. (2017). Author ’ s Accepted Manuscript. Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2017.04.003 Allouhi, A., Fouih, Y. El, Kousksou, T., Jamil, A., Zeraouli, Y., & Mourad, Y. (2015). Energy consumption and efficiency in buildings: Current status and future trends. Journal of Cleaner Production, 109, 118–130. https://doi.org/10.1016/j.jclepro.2015.05.139 Alves, T., Machado, L., Souza, R. G. de, & Wilde, P. de. (2018). Assessing the energy saving potential of an existing high-rise office building stock. Energy & Buildings, 173, 547–561. https://doi.org/https://doi.org/10.1016/j.enbuild.2018.05.044. Alwetaishi, M. (2017). Journal of King Saud University – Engineering Sciences Impact of glazing to wall ratio in various climatic regions : A case study. Journal of King Saud University - Engineering Sciences, 1–13. https://doi.org/10.1016/j.jksues.2017.03.001 Bandara, R. M. P. S., & Attalage, R. a. (2012). Optimization Methodologies for Building Performance Modelling and Optimization. National Engineering Conference, 18th ERU Symposium, May 2014, 32–37. Bracarense, M. S. S., Papa, R. P., & Jota, P. R. S. (2005). Bioclimatic architecture concepts applied to CEFET ’ s building. International Conference “Passive and Low Energy Cooling for the Built Environment,” Santorini, Greece. Bruhns, H., Steadman, P., & Herring, H. (2000). A database and model of energy use in the nondomestic building stock of England and Wales. Environment and Planning B: Planning and Design, 66(4), 277–297. https://doi.org/https://doi.org/10.1016/S0306-2619(00)00018-0 Bruhns, H., & Wyatt, P. (2011). A data framework for measuring the energy consumption of the non-domestic building stock. Building Research & Information, 39(March 2015), 37–41. https://doi.org/10.1080/09613218.2011.559704 176 CBSL. (2018). Economic and Social Statistics of Sri Lanka 2018. https://www.cbsl.gov.lk/en/publications/other-publications/statistical- publications/economic-and-social-statistics-of-sri-lanka Chirarattananon, S., Chedsiri, S., & Renshen, L. (2000). Daylighting through light pipes in the tropics. Solar Energy, 69(4), 331–341. https://doi.org/10.1016/S0038-092X(00)00081-5 Choudhary, R. (2012). Energy analysis of the non-domestic building stock of Greater London. Building and Environment, 51, 243–254. https://doi.org/10.1016/j.buildenv.2011.10.006 Coffey, B., Borgeson, S., Selkowitz, S., Apte, J., Mathew, P., & Haves, P. (2009). Towards a very low-energy building stock: Modelling the US commercial building sector to support policy and innovation planning. Building Research and Information, 37(5–6), 610–624. https://doi.org/10.1080/09613210903189467 CoMTrans Urban Transport Master Plan: Executive Summary. (2014). URBAN TRANSPORT SYSTEM DEVELOPMENT PROJECT FOR COLOMBO METROPOLITAN REGION AND SUBURBS (Issue August). Darula, S., Kittler, R., & Kocifaj, M. (2010). Luminous effectiveness of tubular light- guides in tropics. Applied Energy, 87(11), 3460–3466. https://doi.org/10.1016/j.apenergy.2010.05.006 Dascalaki, E. G., Droutsa, K., Gaglia, A. G., Kontoyiannidis, S., & Balaras, C. A. (2010). Data collection and analysis of the building stock and its energy performance - An example for Hellenic buildings. Energy and Buildings, 42(8), 1231–1237. https://doi.org/10.1016/j.enbuild.2010.02.014 Davis, J., & Swenson, A. (1998). Trends in energy use in commercial buildings -- Sixteen years of EIA’s commercial buildings energy consumption survey. Proceedings of the ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA (US). Dirks, J. A., Gorrissen, W. J., Hathaway, J. H., Skorski, D. C., Scott, M. J., Pulsipher, T. C., Huang, M., Liu, Y., & Rice, J. S. (2014). Impacts of climate change on energy consumption and peak demand in buildings : A detailed regional approach. Energy, 79, 20–32. https://doi.org/10.1016/j.energy.2014.08.081 Edmonds, I. R., & Greenup, P. J. (2002). Daylighting in the tropics. Solar Energy, 177 73(2), 111–121. https://doi.org/10.1016/S0038-092X(02)00039-7 Emmanuel, R. (2003). Assessment of impact of land cover changes on urban bioclimate: The case of colombo, sri lanka. Architectural Science Review, 46(2), 151–158. https://doi.org/10.1080/00038628.2003.9696978 Emmanuel, R., & Rogithan, R. (2002). How energy efficient is the EEBC ? Evaluation based on a simulated office building. Built Environment: Sri Lanka, 03(01), 31–37. Energy Performance of Buildings Directive. (n.d.). European Commision. Retrieved May 6, 2019, from https://ec.europa.eu/energy/topics/energy-efficiency/energy- efficient-buildings/energy-performance-buildings-directive_en Fadzil, S. F. S., & Sheau-Jiunn Sia. (2004). Sunlight control and daylight distribution analysis : the KOMTAR case study. Building and Environment, 39(6), 713–717. https://doi.org/10.1016/j.buildenv.2003.12.009 Fonseca, J. A., & Schlueter, A. (2015). Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts. Applied Energy, 142, 247–265. https://doi.org/10.1016/j.apenergy.2014.12.068 Gakovic, B. (2000). Areas and types of glazing and other openings in the nondomestic building stock. 27, 667–694. Gao, C. F., & Lee, W. L. (2011). Evaluating the influence of openings configuration on natural ventilation performance of residential units in Hong Kong. Building and Environment, 46(4), 961–969. https://doi.org/10.1016/j.buildenv.2010.10.029 GBEE - About OneNYC Green Buildings & Energy Efficiency. (n.d.). Retrieved May 6, 2019, from http://home2.nyc.gov/html/gbee/html/about/about.shtml GEA. (2012). Global Energy Assessment - Toward a Sustainable Future. https://doi.org/10.5860/choice.50-4462 Ghiai, M. M., Mahdavinia, M., Parvane, F., & Jafarikhah, S. (2014). Relation between Energy Consumption and Window to Wall Ratio in High-Rise Office Buildings in Tehran. 3(2), 366–375. Ghisi, E., & Tinker, J. A. (2005). An Ideal Window Area concept for energy efficient integration of daylight and artificial light in buildings. Building and Environment, 40(1), 51–61. https://doi.org/10.1016/j.buildenv.2004.04.004 Gilg, G. J., & Pe, C. L. V. (2004). The Effect of Building Geometry on Energy Use. 178 Energy Engineering, 101(2), 70–80. https://doi.org/10.1080/01998590409509263 Gilg, G. J., & Valentine, C. L. (2004). The effect of building geometry on energy use. Energy Engineering: Journal of the Association of Energy Engineering, 101(2), 70–80. https://doi.org/10.1080/01998590409509263 Givoni, B., Noguchi, M., Saaroni, H., Pochter, O., Yaron Yaacov, Feller, N., & Becker, S. (2003). Outdoor comfort research issues. Energy & Buildings, 35(1), 77–86. https://doi.org/https://doi.org/10.1016/S0378-7788(02)00082-8 Goia, F., Haase, M., & Perino, M. (2013). Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective. Applied Energy, 108, 515–527. https://doi.org/10.1016/j.apenergy.2013.02.063 Hachem, C., Athienitis, A., & Paul fazio. (2014). Design of Curtain Wall Facades for Improved Solar Potential and Daylight Distribution. Energy Procedia, 57, 1815–1824. https://doi.org/10.1016/j.egypro.2014.10.045 Hemsath, T. L., & Alagheband Bandhosseini, K. (2015). Sensitivity analysis evaluating basic building geometry’s effect on energy use. Renewable Energy, 76, 526–538. https://doi.org/10.1016/j.renene.2014.11.044 IEA/IPEEC. (2015). Building Energy Performance Metrics-Supporting Energy Efficiency Progress in Major Economies. https://doi.org/10.1017/CBO9781107415324.004 IEA. (2013). Southeast Asia Energy Outlook. In World Energy Outlook. https://doi.org/10.1787/weo-2013-en IEA. (2015). World Energy Outlook 2015. Executive Summary. International Energy Agency Books Online, 1–9. https://doi.org/10.1787/weo-2005-en IEA. (2018). CO2 emissions from fuel combustion: Overview. In International Energy Agency. https://webstore.iea.org/co2-emissions-from-fuel-combustion- 2018 IEA. (2019). Perspective for the Clean Energy Transition:The Critical Role of Buildings. https://www.iea.org/reports/the-critical-role-of-buildings Inanici, M. N., & Demirbilek, F. N. (2000). Thermal performance optimization of building aspect ratio and south window size in five cities having different climatic characteristics of Turkey. Building and Environment, 35(1), 41–52. https://doi.org/10.1016/S0360-1323(99)00002-5 179 IPCC. (2014). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC. (2018). Summary for Policymakers. In: Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to. IPEEC. (2014). Building Energy Rating Schemes -Assessing Issues and Impacts (Issue February). http://www.ipeec.org/publications/download/id/1016.html Jayasinghe M.T.R., Sujeewa L.C, Fernando K.K.J.S., W. R. A. (1997). Passive solar techniques for sri lanka. Research For Industry, June. https://www.researchgate.net/publication/304247421 John Burnett, Bojić, M., & Yik, F. (2005). Wind-induced pressure at external surfaces of a high-rise residential building in Hong Kong. Building and Environment, 40(6), 765–777. https://doi.org/10.1016/j.buildenv.2004.08.019 Jones, P., Williams, J., & Lannon, S. (2000). Planning for a sustainable city: An energy and environmental prediction model. Journal of Environmental Planning and Management, 43(6), 855–872. https://doi.org/DOI:10.1080/09640560020001728 Kneifel, J. (2011). Beyond the code: Energy, carbon, and cost savings using conventional technologies. Energy and Buildings, 43(4), 951–959. https://doi.org/10.1016/j.enbuild.2010.12.019 Ko, D., Elnimeiri, M., & Clark, R. J. (2008). Prediction of Daylight Performance in Office Buildings based on LEED 2 . 2 Daylight Requirements. 976(October), 22–25. https://doi.org/10.1002/tal Krackeler, T., Schipper, L., & Sezgen, O. (1998). Carbon dioxide emissions in OECD service sectors: The critical role of electricity use. Energy Policy, 26(15), 1137–1152. https://doi.org/10.1016/S0301-4215(98)00055-X Lee, J. W., Jung, H. J., Park, J. Y., Lee, J. B., & Yoon, Y. (2013). Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements. Renewable Energy, 50, 522–531. https://doi.org/10.1016/j.renene.2012.07.029 Lee, W. L. (2012). Benchmarking energy use of building environmental assessment schemes. Energy and Buildings, 45, 326–334. 180 https://doi.org/10.1016/j.enbuild.2011.11.024 Li, D. H. W., & Lam, J. C. (2003). An investigation of daylighting performance and energy saving in a daylit corridor. Energy and Buildings, 35(4), 365–373. https://doi.org/10.1016/S0378-7788(02)00107-X Ling, C. S., Ahmad, M. H., & Ossen, D. R. (2007). The effect of geometric shape and building orientation on minimising solar insolation on high-rise buildings in hot humid climate. Journal of Construction in Developing Countries, 12(1), 27– 38. Linhart, F., Wittkopf, S. K., & Scartezzini, J. L. (2010). Performance of Anidolic Daylighting Systems in tropical climates - Parametric studies for identification of main influencing factors. Solar Energy, 84(7), 1085–1094. https://doi.org/10.1016/j.solener.2010.01.014 Liping, W., & Hien, W. N. (2007). The impacts of ventilation strategies and facade on indoor thermal environment for naturally ventilated residential buildings in Singapore. Building and Environment, 42(12), 4006–4015. https://doi.org/10.1016/j.buildenv.2006.06.027 Lomas, K. J., & Ji, Y. (2009). Resilience of naturally ventilated buildings to climate change: Advanced natural ventilation and hospital wards. Energy and Buildings, 41(6), 629–653. https://doi.org/10.1016/j.enbuild.2009.01.001 Manawadu, L., & Liyanage, N. (2008). Identifying Surface Temperature Pattern of the City of Colombo. Engineer: Journal of the Institution of Engineers, Sri Lanka, 41(5), 133–140. https://doi.org/10.4038/engineer.v41i5.7113 Mangkuto, R. A., Asri, A. D., Rohmah, M., Nugroho Soelami, F. X., & Soegijanto, R. M. (2016). Revisiting the national standard of daylighting in Indonesia: A study of five daylit spaces in Bandung. Solar Energy, 126, 276–290. https://doi.org/10.1016/j.solener.2016.01.022 Mangkuto, R. A., Rohmah, M., & Asri, A. D. (2016). Design optimisation for window size , orientation , and wall reflectance with regard to various daylight metrics and lighting energy demand : A case study of buildings in the tropics. Applied Energy, 164, 211–219. https://doi.org/10.1016/j.apenergy.2015.11.046 Mata, É., Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270–282. https://doi.org/10.1016/j.buildenv.2014.06.013 McKeen, P., & Fung, A. (2014). The Effect of Building Aspect Ratio on Energy 181 Efficiency: A Case Study for Multi-Unit Residential Buildings in Canada. Buildings, 4(3), 336–354. https://doi.org/10.3390/buildings4030336 Mohamad Kamar, K. A. (2010). Sustainable Construction and Green Buildings in Malaysia. 76. Mortimer, N. D., Ashley, A., Elsayed, M., Kelly, M. D., & Rix, J. H. R. (1999). Developing a database of energy use in the UK non-domestic building stock. Energy Policy, 27(8), 451–468. https://doi.org/10.1016/S0301-4215(99)00044-0 Motuziene, V., & Juodis, E. S. (2010). Simulation based complex energy assessment of office building fenestration. Journal of Civil Engineering and Management, 16(3), 345–351. https://doi.org/10.3846/jcem.2010.39 Mourshed, M. (2011). The impact of the projected changes in temperature on heating and cooling requirements in buildings in Dhaka, Bangladesh. Applied Energy, 88(11), 3737–3746. https://doi.org/10.1016/j.apenergy.2011.05.024 Ng, P. K., & Mithraratne, N. (2014). Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics. Renewable and Sustainable Energy Reviews, 31, 736–745. https://doi.org/10.1016/j.rser.2013.12.044 Nikolopoulou, M., & Steemers, K. (2003). Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy & Buildings, 35, 95– 101. Ochoa, C. E., Aries, M. B. C., van Loenen, E. J., & Hensen, J. L. M. (2012). Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort. Applied Energy, 95, 238–245. https://doi.org/10.1016/j.apenergy.2012.02.042 Ourghi, R., Al-Anzi, A., & Krarti, M. (2007). A simplified analysis method to predict the impact of shape on annual energy use for office buildings. Energy Conversion and Management, 48(1), 300–305. https://doi.org/10.1016/j.enconman.2006.04.011 Paramita, B., & Koerniawan, M. D. (2013). Solar Envelope Assessment in Tropical Region Building Case Study: Vertical Settlement in Bandung, Indonesia. Procedia Environmental Sciences, 17, 757–766. https://doi.org/10.1016/j.proenv.2013.02.093 Pérez-Lombard, L., José Ortiz, & Pout, C. (2008). A review on buildings energy consumption information ´. Energy and Buildings, 40, 394–398. 182 https://doi.org/10.1016/j.enbuild.2007.03.007 Perez, Y. V., & Capeluto, I. G. (2009). Climatic considerations in school building design in the hot-humid climate for reducing energy consumption. Applied Energy, 86(3), 340–348. https://doi.org/10.1016/j.apenergy.2008.05.007 R. M. P. S Bandara, & R. A Attalage. (2020). BUILDING ENERGY STANDARDS/CODES: PRESENT STATUS AND WAY FORWARD FOR SRI LANKA. The Official E-Newsletter of the Institution of Engineers Sri Lanka. https://iesl.lk/SLEN/46/Energy.php Rahman, M. M., Rasul, M. G., & Khan, M. M. K. (2010). Energy conservation measures in an institutional building in sub-tropical climate in Australia. Applied Energy, 87(10), 2994–3004. https://doi.org/10.1016/j.apenergy.2010.04.005 Rajapaksha, U., & Hyde, R. (2005). Sustainable by Passive Architecture, using courtyards in non-domestic buildings in Southeast Queensland. The 2005 World Sustainable Building Conference, 2005(September), 27–29. Rashid, M., Malik, A. M., & Ahmad, T. (2016). Effect of Window Wall Ratio ( WWR ) on Heat Gain in Commercial Buildings in the Climate of Lahore. Int’ernational Journal of Research in Chemical, Metallurgical and Civil Engineering (IJRCMCE), 3(1), 122–125. Ratnaweera, C., & Hestnes, A. G. (1996). Enhanced cooling in typical Sri Lankan dwellings. Energy and Buildings, 23(3), 183–190. https://doi.org/10.1016/0378- 7788(95)00943-4 Ratti, C., Raydan, D., & Steemers, K. (2003). Building Form and Environmental Performance : Archetypes , Analysis and an Arid Climate Building form and environmental performance : archetypes , analysis and an arid climate. Energy and Buildings, 35, 49–59. Salat, S. (2009). Energy loads , CO 2 emissions and building stocks : morphologies , typologies , energy systems and behaviour. Building Research and Information, 37(5–6), 598–609. https://doi.org/https://doi.org/10.1080/09613210903162126 SLSEA. (2017). Sri Lanka Energy Balance 2017. Steadman, P., Bruhns, H. R., & Rickaby, P. A. (2000). An introduction to the national Non-Domestic Building Stock database. Environment and Planning B: Planning and Design, 27(1), 3–10. https://doi.org/10.1068/bst2 Steemers, K. (2003). Energy and the city : density , buildings and transport. Energy 183 and Buildings, 35(1), 3–14. https://doi.org/https://doi.org/10.1016/S0378- 7788(02)00075-0 Summerfield, A. J., & Lowe, R. (2012). Challenges and future directions for energy and buildings research. Building Research & Information, 40(4), 391–400. https://doi.org/https://doi.org/10.1080/09613218.2012.693839 Susorova, I., Tabibzadeh, M., Rahman, A., Clack, H. L., & Elnimeiri, M. (2013). The effect of geometry factors on fenestration energy performance and energy savings in office buildings. Energy & Buildings, 57, 6–13. https://doi.org/10.1016/j.enbuild.2012.10.035 Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A review of modeling techniques. Renewable and Sustainable Energy Reviews, 13(8), 1819–1835. https://doi.org/10.1016/j.rser.2008.09.033 Taylor, P., Rajapaksha, U., & Hyde, R. (2012). Barriers to and opportunities for advanced passive cooling in sub-tropical climates. July 2013, 37–41. https://doi.org/10.1080/00038628.2011.641730 Ukwattage, N. L., & Dayawansa, N. D. K. (2012). Urban Heat Islands and the Energy Demand : An Analysis for Colombo City of Sri Lanka Using Thermal Remote Sensing Data. International Journal of Remote Sensing and GIS, 1(2), 124–131. UN DESA. (2013). World Population Policies 2013. In Population and Development Review. https://doi.org/10.2307/1971985 UN Environment and GlobalABC. (2018). 2018 Global Status Report: Towards a zero-emmision, efficient and resilient buildings and construction sector. https://doi.org/https://doi.org/10.1038/s41370‐017‐0014‐9 Vanhoutteghem, L., Skarning, G. C. J., Hviid, C. A., & Svendsen, S. (2015). Impact of façade window design on energy, daylighting and thermal comfort in nearly zero-energy houses. Energy and Buildings, 102, 149–156. https://doi.org/10.1016/j.enbuild.2015.05.018 Wan, K. K. W., Li, D. H. W., Liu, D., & Lam, J. C. (2011). Future trends of building heating and cooling loads and energy consumption in different climates. Building and Environment, 46(1), 223–234. https://doi.org/10.1016/j.buildenv.2010.07.016 Wan, K. K. W., Li, D. H. W., Pan, W., Lam, J. C., Hooff, V., Wesemael, V., Tarroja, 184 B., Chiang, F., Aghakouchak, A., Samuelsen, S., Raghavan, S. V, Wei, M., Sun, K., Hong, T., Liu, Z., Liu, Y. Y., He, B., Xu, W., Jin, G., … Geving, S. (2018). Impacts of climate change on energy consumption and peak demand in buildings : A detailed regional approach. Applied Energy, 97(April), 274–282. https://doi.org/10.1016/j.energy.2014.08.081 Wang, H., & Chen, Q. (2014). Impact of climate change heating and cooling energy use in buildings in the United States. Energy and Buildings, 82(2014), 428–436. https://doi.org/10.1016/j.enbuild.2014.07.034 Wijayatunga, P. D. ., Fernando, W. J. L. ., & Ranasinghe, S. (2003). Lighting energy efficiency in office buildings : Sri Lanka. Energy Conversion and Management, 44(15), 2383–2392. https://doi.org/https://doi.org/10.1016/S0196- 8904(03)00021-9 Xu, P., Huang, J., Shen, P., Ma, X., Gao, X., Xu, Q., Jiang, H., & Xiang, Y. (2013). Commercial building energy use in six cities in Southern China. Energy Policy, 53, 76–89. https://doi.org/10.1016/j.enpol.2012.10.002 Yamaguchi, Y., Shimoda, Y., & Mizuno, M. (2007). Proposal of a modeling approach considering urban form for evaluation of city level energy management. Energy and Buildings, 39(5), 580–592. https://doi.org/10.1016/j.enbuild.2006.09.011 Yeang, K., & Powell, R. (2007). Designing the ecoskyscraper: Premises for tall building design. Structural Design of Tall and Special Buildings, 16(4), 411– 427. https://doi.org/10.1002/tal.414