174 References 1. S. Rukkur, C. Dechwayukul, W. Thongruang, and O. Patarapaiboolchai, “Heat built- up of industrial solid tires in Thailand,” Advanced Materials Research, vol. 844, pp. 445–449, 2013. doi:10.4028/www.scientific.net/amr.844.445 2. K. Kim et al., “Styrene-butadiene-glycidyl methacrylate terpolymer/silica composites: Dispersion of silica particles and dynamic mechanical properties,” Composite Interfaces, vol. 21, no. 8, pp. 685–702, 2014. doi:10.1080/15685543.2014.927720 3. S. Wolff, U. Gorl, M. J. Wang, and W. Wolff, “Silica-based tread compounds,” European rubber journal, vol. 176, no. 1, pp. 16-19, 1994. 4. A. Ansarifar, L. Wang, R. J. Ellis, and S. P. Kirtley, “The reinforcement and crosslinking of styrene butadiene rubber with silanized precipitated silica nanofiller,” Rubber Chemistry and Technology, vol. 79, no. 1, pp. 39–54, 2006. doi:10.5254/1.3547928 5. J. G. Seo, C. K. Lee, D. Lee, and S. H. Song, “High-performance tires based on graphene coated with zn-free coupling agents,” Journal of Industrial and Engineering Chemistry, vol. 66, pp. 78–85, 2018. doi:10.1016/j.jiec.2018.04.015 6. A. A. Balandin et al., “Superior thermal conductivity of single-layer graphene,” Nano Letters, vol. 8, no. 3, pp. 902–907, 2008. doi:10.1021/nl0731872 7. A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nature Materials, vol. 10, no. 8, pp. 569–581, 2011. doi:10.1038/nmat3064 8. S. Ghosh et al., “Dimensional crossover of thermal transport in few-layer graphene,” Nature Materials, vol. 9, no. 7, pp. 555–558, 2010. doi:10.1038/nmat2753 9. R. Zacharia, H. Ulbricht, and T. Hertel, “Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons,” Physical Review B, vol. 69, no. 15, 2004. doi:10.1103/physrevb.69.155406 10. “Bogala Graphite lanka,” Home: AMG Mining, https://www.gk- graphite.lk/index.php?id=477 (accessed Jul. 12, 2019). 11. L. Ma, H. Yan, J. Ke and Y. He, "Thermal Conductivity and Mechanical Properties of Natural Rubber Filled with Modified-Graphite", Key Engineering Materials, vol. 501, pp. 10-15, 2012. Available: 10.4028/www.scientific.net/kem.501.10 12. J. Song, L. Ma, Y. He, H. Yan, Z. Wu and W. Li, "Modified graphite filled natural rubber composites with good thermal conductivity", Chinese Journal of Chemical Engineering, vol. 23, no. 5, pp. 853-859, 2015. Available: 10.1016/j.cjche.2014.05.022 13. A. Malas, C. Das, A. Das and G. Heinrich, "Development of expanded graphite filled natural rubber vulcanizates in presence and absence of carbon black: Mechanical, thermal and morphological properties", Materials & Design, vol. 39, pp. 410-417, 2012. Available: 10.1016/j.matdes.2012.03.007. 14. A. Malas, P. Pal and C. Das, "Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends", Materials & Design, vol. 55, pp. 664-673, 2014. Available: 10.1016/j.matdes.2013.10.038. 15. L. Wang, L. Zhang and M. Tian, "Effect of expanded graphite (EG) dispersion on the mechanical and tribological properties of nitrile rubber/EG composites", Wear, vol. 276-277, pp. 85-93, 2012. Available: 10.1016/j.wear.2011.12.009. 16. J. Potts, O. Shankar, S. Murali, L. Du and R. Ruoff, "Latex and two-roll mill processing of thermally-exfoliated graphite oxide/natural rubber 175 nanocomposites", Composites Science and Technology, vol. 74, pp. 166-172, 2013. Available: 10.1016/j.compscitech.2012.11.008. 17. A. Malas, P. Pal, S. Giri, A. Mandal and C. Das, "Synthesis and characterizations of modified expanded graphite/emulsion styrene butadiene rubber nanocomposites: Mechanical, dynamic mechanical and morphological properties", Composites Part B: Engineering, vol. 58, pp. 267-274, 2014. Available: 10.1016/j.compositesb.2013.10.028. 18. A. Das et al., "Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: A comparative study", Composites Science and Technology, vol. 72, no. 16, pp. 1961-1967, 2012. Available: 10.1016/j.compscitech.2012.09.005. 19. N. Ajalesh Balachandran, K. Philip and J. Rani, "Effect of expanded graphite on thermal, mechanical and dielectric properties of ethylene–propylene–diene terpolymer/hexafluoropropylene–vinylidinefluoridedipolymer rubber blends", European Polymer Journal, vol. 49, no. 1, pp. 247-260, 2013. Available: 10.1016/j.eurpolymj.2012.08.014. 20. H. Kulkarni et al., "ENHANCED MECHANICAL PROPERTIES OF EPOXY/GRAPHITE COMPOSITES", International Journal of Advanced Engineering Research and Studies, vol. -, 201701-05, 2017. 21. K. Sai Narendra Reddy, D. Unnikrishnan and M. Balachandran, "Investigation and Optimization of Mechanical, Thermal and Tribological Properties of UHMWPE – Graphite Nanocomposites", Materials Today: Proceedings, vol. 5, no. 11, pp. 25139- 25148, 2018. Available: 10.1016/j.matpr.2018.10.315. 22. G. Otieno and J. Kim, "Conductive graphite/polyurethane composite films using amphiphilic reactive dispersant: Synthesis and characterization", Journal of Industrial and Engineering Chemistry, vol. 14, no. 2, pp. 187-193, 2008. Available: 10.1016/j.jiec.2007.09.004. 23. S. Ha et al., "Thermal conductivity of graphite filled liquid crystal polymer composites and theoretical predictions", Composites Science and Technology, vol. 88, pp. 113- 119, 2013. Available: 10.1016/j.compscitech.2013.08.022. 24. P. R. Dufour, A. W. J. Gee, J. A. Kingma, and J. W. M. Mens, “The effect of Glassfibre, graphite and MOS2 on the tribological performance of a liquid crystalline polymer,” Wear, vol. 156, no. 1, pp. 85–100, 1992. doi:10.1016/0043-1648(92)90146- y 25. P. García, R. Ramírez-Aguilar, M. Torres, E. Franco-Urquiza, J. May-Crespo and N. Camacho, "Mechanical and thermal behavior dependence on graphite and oxidized graphite content in polyester composites", Polymer, vol. 153, pp. 9-16, 2018. Available: 10.1016/j.polymer.2018.06.069 26. V. Hebbar, R. F. Bhajantri, H. B. Ravikumar, and S. Ningaraju, “Role of free volumes in conducting properties of go and rgo filled PVA-PEDOT:PSS composite free standing films: A positron annihilation lifetime study,” Journal of Physics and Chemistry of Solids, vol. 126, pp. 242–256, 2019. doi:10.1016/j.jpcs.2018.11.014 27. Q. Mu and S. Feng, "Thermal conductivity of graphite/silicone rubber prepared bysolutionintercalation", Thermochimica Acta, vol. 462, no. 1-2, pp. 70-75, 2007. Available: 10.1016/j.tca.2007.06.006 28. H. Wu, C. Lu, W. Zhang and X. Zhang, "Preparation of low-density polyethylene/low- temperature expandable graphite composites with high thermal conductivity by an in- situ expansion melt blending process", Materials & Design (1980-2015), vol. 52, pp. 621-629, 2013. Available: 10.1016/j.matdes.2013.05.056 176 29. A. Malas and C. Das, "Influence of modified graphite flakes on the physical, thermo- mechanical and barrier properties of butyl rubber", Journal of Alloys and Compounds, vol. 699, pp. 38-46, 2017. Available: 10.1016/j.jallcom.2016.12.232 30. S. Gantayat, G. Prusty, D. Rout and S. Swain, "Expanded graphite as a filler for epoxy matrix composites to improve their thermal, mechanical and electrical properties", New Carbon Materials, vol. 30, no. 5, pp. 432-437, 2015. Available: 10.1016/s1872- 5805(15)60200-1 31. J.-F. Luo et al., “Numerical and experimental study on the heat transfer properties of the composite paraffin/expanded graphite phase change material,” International Journal of Heat and Mass Transfer, vol. 84, pp. 237–244, 2015. doi:10.1016/j.ijheatmasstransfer.2015.01.019 32. J. Yang et al., "Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding", Acta Materialia, vol. 55, no. 18, pp. 6372-6382, 2007. Available: 10.1016/j.actamat.2007.07.043 33. S. Ganguli, A. Roy and D. Anderson, "Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites", Carbon, vol. 46, no. 5, pp. 806- 817, 2008. Available: 10.1016/j.carbon.2008.02.008 34. B. Debelak and K. Lafdi, "Use of exfoliated graphite filler to enhance polymer physical properties", Carbon, vol. 45, no. 9, pp. 1727-1734, 2007. Available: 10.1016/j.carbon.2007.05.010 35. K. Kong, M. Mariatti, A. Rashid and J. Busfield, "Enhanced conductivity behavior of polydimethylsiloxane (PDMS) hybrid composites containing exfoliated graphite nanoplatelets and carbon nanotubes", Composites Part B: Engineering, vol. 58, pp. 457-462, 2014. Available: 10.1016/j.compositesb.2013.10.039 36. I. Inuwa et al., "Influence of exfoliated graphite nanoplatelets on the flammability and thermal properties of polyethylene terephthalate/polypropylene nanocomposites", Polymer Degradation and Stability, vol. 110, pp. 137-148, 2014. Available: 10.1016/j.polymdegradstab.2014.08.025 37. C. Gómez et al., "An experimental study of dynamic behaviour of graphite– polycarbonatediol polyurethane composites for protective coatings", Applied Surface Science, vol. 275, pp. 295-302, 2013. Available: 10.1016/j.apsusc.2012.12.108 38. V. Cecen, R. Thomann, R. Mülhaupt and C. Friedrich, "Thermal conductivity, morphology and mechanical properties for thermally reduced graphite oxide-filled ethylene vinylacetate copolymers", Polymer, vol. 132, pp. 294-305, 2017. Available: 10.1016/j.polymer.2017.11.009 39. P. Shi, Y. Wang, H. Guo, H. Sun and Y. Zhao, "The thermal and mechanical properties of carbon fiber/flake graphite/cyanate ester composites", Carbon, vol. 150, p. 555, 2019. Available: 10.1016/j.carbon.2019.03.069 40. G. Li et al., "Fabrication of robust and highly thermally conductive nanofibrillated cellulose/graphite nanoplatelets composite papers", Composites Science and Technology, vol. 138, pp. 179-185, 2017. Available: 10.1016/j.compscitech.2016.12.001 41. Y. Zhang, S. Qi, X. Wu and G. Duan, "Electrically conductive adhesive based on acrylate resin filled with silver plating graphite nanosheet", Synthetic Metals, vol. 161, no. 5-6, pp. 516-522, 2011. Available: 10.1016/j.synthmet.2011.01.004 42. B. Wen and X. Zheng, "Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend", Composites Science and Technology, vol. 174, pp. 68-75, 2019. Available: 10.1016/j.compscitech.2019.02.017 43. S. Chandrasekaran, C. Seidel and K. Schulte, "Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: Mechanical, electrical and 177 thermal properties", European Polymer Journal, vol. 49, no. 12, pp. 3878-3888, 2013. Available: 10.1016/j.eurpolymj.2013.10.008 44. T. Cui, P. Li, Y. Liu, J. Feng, M. Xu and M. Wang, "Preparation of thermostable electroconductive composite plates from expanded graphite and polyimide", Materials Chemistry and Physics, vol. 134, no. 2-3, pp. 1160-1166, 2012. Available: 10.1016/j.matchemphys.2012.04.009 45. X. WANG et al., “PTC/NTC behavior of PVDF composites filled with GF and CF,” Chemical Research in Chinese Universities, vol. 24, no. 5, pp. 648–652, 2008. doi:10.1016/s1005-9040(08)60136-1 46. H. King, “Graphite,” geology, https://geology.com/minerals/graphite.shtml (accessed Aug. 27, 2019). 47. “An introduction to graphite: Graphite 101,” asbury.com, https://asbury.com/nl/hulpmiddelenbibliotheek/education/graphite-101/introduction/ (accessed Aug. 22, 2019). 48. F. B. Tek et al., “Graphite (c) - classifications, Properties & Applications,” AZoM.com, https://www.azom.com/article.aspx?ArticleID=1630 (accessed Aug. 24, 2019). 49. P. Sijpkes, “Carbon Structures,” Peter Guo-hua Fu, https://www.mcgill.ca/architecture/pieter-sijpkes (accessed Aug. 22, 2019). 50. Kambale graphite deposit - Castle Minerals, https://www.castleminerals.com/downloads/presentations/cdt_201207.pdf (accessed Aug. 21, 2019). 51. S. S. A. Sparty, T. Weslosky, and J. barbara, “Your Independent Market News Source.,” InvestorNews, https://investorintel.com/ (accessed Jan. 22, 2020). 52. Parlous, “Carbon vapor and gaseous carbon,” Physics Forums: Science Discussion, Homework Help, Articles, https://www.physicsforums.com/threads/carbon-vapor- and-gaseous-carbon.63610/ (accessed Aug. 22, 2020). 53. M. Pistilli, “What is synthetic graphite?” INN, https://investingnews.com/daily/resource-investing/battery-metals- investing/graphite-investing/what-is-synthetic-graphite-asbury-carbons-stephen- riddle-explains/ (accessed Aug. 22, 2019). 54. “RBMK,” RBMK - Energy Education, https://energyeducation.ca/encyclopedia/RBMK#:~:targetText=Graphite%20works %20as%20the%20moderator,cooled%20down%20by%20any%20coolant (accessed Mar. 13, 2020). 55. Bearing and sealing - graphitecova.com, http://www.graphitecova.com/files/bearing_and_sealing.pdf (accessed Nov. 23, 2019). 56. Ceylon graphene technologies – graphene from best, https://ceylongraphene.com/ (accessed Aug. 23, 2019). 57. C. B. Dissanayake, “The origin of graphite of Sri Lanka,” Organic Geochemistry, vol. 3, no. 1–2, pp. 1–7, 1981. doi:10.1016/0146-6380(81)90006-1 58. R. Bacon, “Growth, structure, and properties of graphite whiskers,” Journal of Applied Physics, vol. 31, no. 2, pp. 283–290, 1960. doi:10.1063/1.1735559 59. L. Pauling, “The structure and properties of graphite and boron nitride,” Proceedings of the National Academy of Sciences, vol. 56, no. 6, pp. 1646–1652, 1966. doi:10.1073/pnas.56.6.1646 60. J. R. Cost, K. R. Janowski, and R. C. Rossi, “Elastic properties of isotropic graphite,” The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, vol. 17, no. 148, pp. 851–854, 1968. doi:10.1080/14786436808223035 178 61. T. TANABE, “On the characterization of graphite,” Journal of Nuclear Materials, vol. 191–194, pp. 330–334, 1992. doi:10.1016/0022-3115(92)90780-o 62. J.-L. Tsai and J.-F. Tu, “Characterizing mechanical properties of graphite using molecular dynamics simulation,” Materials & Design, vol. 31, no. 1, pp. 194– 199, 2010. doi:10.1016/j.matdes.2009.06.032 63. A. N. Popova, “Crystallographic analysis of graphite by X-ray diffraction,” Coke and Chemistry, vol. 60, no. 9, pp. 361–365, 2017. doi:10.3103/s1068364x17090058 64. L. Kurpaska et al., “Structural and mechanical properties of different types of graphite used in nuclear applications,” Journal of Molecular Structure, vol. 1217, p. 128370, 2020. doi:10.1016/j.molstruc.2020.128370 65. T. D. Burchell and T. R. Pavlov, “Graphite: Properties and characteristics,” Comprehensive Nuclear Materials, pp. 355–381, 2020. doi:10.1016/b978-0-12- 803581-8.11777-1 66. A. Dobner, W. Graf, P. Hahn-Weinheimer, and A. Hirner, “Stable carbon isotopes of graphite from Bogala Mine, Sri Lanka,” Lithos, vol. 11, no. 3, pp. 251–255, 1978. doi:10.1016/0024-4937(78)90025-7 67. C. B. Dissanayake, R. P. Gunawardena, and D. M. S. K. Dinalankara, “Trace elements in vein graphite of Sri Lanka,” Chemical Geology, vol. 68, no. 1–2, pp. 121–128, 1988. doi:10.1016/0009-2541(88)90091-5 68. N. Balasooriya et al., "PHYSICAL AND CHEMICAL PURIFICATION OF SRI LANKAN FLAKE GRAPHITE AND VEIN GRAPHITE", IntSym 2015, SEUSL, vol. 5, pp. 163-166, 2015. 69. D. Bouvard, J. Lanier, and P. Stutz, “Mechanical behaviour of graphite powder,” Powder Technology, vol. 54, no. 3, pp. 175–181, 1988. doi:10.1016/0032- 5910(88)80076-7 70. P. Touzain, N. Balasooriya, K. Bandaranayake, and C. Descolas-Gros, “Vein graphite from the Bogala and Kahatagaha-Kolongaha Mines, Sri Lanka: A possible origin,” The Canadian Mineralogist, vol. 48, no. 6, pp. 1373–1384, 2010. doi:10.3749/canmin.48.5.1373 71. T. Amaraweera, N. Balasooriya, H. Wijayasinghe, "STUDY OF THERMAL BEHAVIOR OF VEIN GRAPHITE FOR ADVANCE TECHNOLOGICAL APPLICATIONS", Journal of Geological Society of Sri Lanka, vol. 18, pp. 21-28, 2017. 72. A. Hijazi, Introduction to Non-destructive Testing Techniques. 2020. [online]. Available: https://eis.hu.edu.jo/acuploads/10526/ultrasonic%20testing.pdf. [Accessed: 12- Aug- 2020] 73. H. ‐P. Boehm and U. Hofmann, “Die rhomboedrische modifikation des graphits,” Zeitschrift für anorganische und allgemeine Chemie, vol. 278, no. 1–2, pp. 58–77, 1955. doi:10.1002/zaac.19552780109 74. M. TAGIRI, “A measurement of the graphitizing-degree by the X-ray powder diffractometer.,” The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, vol. 76, no. 11, pp. 345–352, 1981. doi:10.2465/ganko1941.76.345 75. J. Mering and J. Maire, “Le Processus de la graphitation,” Journal de Chimie Physique, vol. 57, pp. 803–814, 1960. doi:10.1051/jcp/1960570803 76. H. Wada et al., “Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphisms, Japan,” Contributions to Mineralogy and Petrology, vol. 118, no. 3, pp. 217–228, 1994. doi:10.1007/bf00306643 179 77. M. Besterci, H. Käerdi, P. Kulu, and V. Mikli, “Characterization of powder particle morphology,” Proceedings of the Estonian Academy of Sciences. Engineering, vol. 7, no. 1, p. 22, 2001. doi:10.3176/eng.2001.1.03 78. P.G.R. Darmaratne, P.V.A. Hemalal and M.C. Hettiwatte, "Evaluation of Overhand Cut and Fill Mining Method used in Bogala Graphite Mines, Sri Lanka", NATIONAL ENGINEERING CONFERENCE, vol. 19, 2013. 79. L.J. Bond, "Basic Inspection Methods (Pulse-Echo and Transmission Methods)", Nondestructive Evaluation of Materials, pp. 169-183, 2018. Available: 10.31399/asm.hb.v17.a0006469. 80. D. Salamon, "Advanced Ceramics", Advanced Ceramics for Dentistry, pp. 103-122, 2014. Available: 10.1016/b978-0-12-394619-5.00006-7. 81. H. Pierson, "Graphite Structure and Properties", Handbook of Carbon, Graphite, Diamonds and Fullerenes, pp. 43-69, 1993. Available: 10.1016/b978-0-8155-1339- 1.50008-6. 82. G.B. Spence , Proc 5th Conf. on Carbon, Penn State, 1961, Vol. 2, p. 531. Pergamon Press, New York, (1962), as sited by, J. Cost, K. Janowski and R. Rossi, "Elastic properties of isotropic graphite", The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, vol. 17, no. 148, pp. 851-854, 1968. Available: 10.1080/14786436808223035. 83. J. Boylan, Materials World, Vol. 4, no. 12 pp. 707-8, December 1996 84. P. Touzain et al.,"VEIN GRAPHITE FROM THE BOGALA AND KAHATAGAHA- KOLONGAHA MINES, SRI LANKA: A POSSIBLE ORIGIN", The Canadian Mineralogist, vol. 48, no. 6, pp. 1373-1384, 2010. Available: 10.3749/canmin.48.5.1373. 85. S. Sōmiya , Handbook of advanced ceramics. Academic press, 2013, pp. 25-60. 86. C.M. Hussain, A. Mishra, New polymer nanocomposites for environmental remediation. Elsevier, 2018, pp. 175-206. 87. H. Pierson, Handbook of carbon, graphite, diamond, and fullerenes. Park Ridge, N.J: Noyes Publications, 2001.p.54. 88. J. Zhou, Y. Zhang, and J. K. Chen, “Numerical simulation of random packing of spherical particles for powder-based additive manufacturing,” Journal of Manufacturing Science and Engineering, vol. 131, no. 3, 2009. doi:10.1115/1.3123324 89. P. Philipand, L. Fagbenle, "DESIGN OF LEE’S DISC ELECTRICAL METHOD FOR DETERMINING THERMAL CONDUCTIVITY OF A POOR CONDUCTOR IN THE FORM OF A FLAT DISC", International Journal of Innovation and Scientific Research, vol. 9, no. 2, pp. 335-343, 2014. 90. S. Alvarado, E. Marín, A. G. Juárez, A. Calderón, and R. Ivanov, “A hot-wire method based thermal conductivity measurement apparatus for teaching purposes,” European Journal of Physics, vol. 33, no. 4, pp. 897–906, 2012. doi:10.1088/0143- 0807/33/4/897 91. P. Predeep, N.S. Saxena, Effective Thermal Conductivity and Thermal Diffusivity of Some Rare Earth Oxides, Physica Scripta, 55: 634-636, 1997, Available at: http://iopscience.iop.org/article/10.1088/0031-8949/55/5/017 92. M. Yuan, T. T Diller, D. Bourell, and J. Beaman, “Thermal conductivity of polyamide 12 powder for use in Laser Sintering,” Rapid Prototyping Journal, vol. 19, no. 6, pp. 437–445, 2013. doi:10.1108/rpj-11-2011-0123 93. H. Li, “Literature review on Cool Pavement Research,” Pavement Materials for Heat Island Mitigation, pp. 15–42, 2016. doi:10.1016/b978-0-12-803476-7.00002-7 94. M. F. Ashby, “Material selection strategies,” Materials and the Environment, pp. 227– 273, 2013. doi:10.1016/b978-0-12-385971-6.00009-9 180 95. S. Gehlin, “Borehole Thermal Energy Storage,” Advances in Ground-Source Heat Pump Systems, pp. 295–327, 2016. doi:10.1016/b978-0-08-100311-4.00011-x 96. M. R. Hall and D. Allinson, “Heat and mass transport processes in building materials,” Materials for Energy Efficiency and Thermal Comfort in Buildings, pp. 3–53, 2010. doi:10.1533/9781845699277.1.3 97. S. Picard, D. T. Burns, and P. Roger, “Determination of the specific heat capacity of a graphite sample using absolute and differential methods,” Metrologia, vol. 44, no. 5, pp. 294–302, 2007. doi:10.1088/0026-1394/44/5/005 98. NHTSA | National Highway Traffic Safety Administration, https://www.nhtsa.gov/sites/nhtsa.gov/files/pneumatictire_hs-810-561.pdf (accessed Oct. 12, 2021). 99. Sri Lanka Export Development Board - Sri Lanka Business Portal, https://www.srilankabusiness.com/ (accessed Oct. 12, 2021). 100. Rubber, vulcanized or thermoplastic – Determination of abrasion resistance using a rotating cylindrical drum device, DIN ISO 4649, 2006 101. I. Yuksel, "Blast-furnace slag", Waste and Supplementary Cementitious Materials in Concrete, pp. 361-415, 2018. Available: 10.1016/b978-0-08-102156- 9.00012-2. 102. J. Arguello and A. Santos, "Hardness and compression resistance of natural rubber and synthetic rubber mixtures", Journal of Physics: Conference Series, vol. 687, p. 012088, 2016. Available: 10.1088/1742-6596/687/1/012088. 103. Rubber, vulcanized or thermoplastic — Determination of indentation hardness — Part 1: Durometer method (Shore hardness), ISO 7619, 2010 104. Determining the rebound resilience of rubber using the Schob pendulum, DIN 53512, 2000 105. Determination of density, DIN 53479, 1976 106. B. Lu, K. Lamnawar, A. Maazouz and H. Zhang, "Revealing the dynamic heterogeneity of PMMA/PVDF blends: from microscopic dynamics to macroscopic properties", Soft Matter, vol. 12, no. 13, pp. 3252-3264, 2016. Available: 10.1039/c5sm02659h. 107. Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension, ASTM D 412, 2008 108. Standard Test methods for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers, ASTM D 624, 1998 109. N. Cheremisinoff, "V", Condensed Encyclopedia of Polymer Engineering Terms, pp. 340-347, 2001. Available: 10.1016/b978-0-08-050282-3.50026-3. 110. Standard Test Method for Rubber Property—Vulcanization Using Rotor-less Cure Meters, ASTM D 5289, 2012 111. K. Sisanth, M. Thomas, J. Abraham and S. Thomas, "General introduction to rubber compounding", Progress in Rubber Nanocomposites, pp. 1-39, 2017. Available: 10.1016/b978-0-08-100409-8.00001-2. 112. D. Ondrušová, I. Labaj, J. Vršková, M. Pajtášová and V. Zvoláneková Mezencevov, "Application of alternative additives in the polymer composite systems used in automotive industry", 2021. Available: 10.1088/1757-899X/776/1/012101. 113. H. Hassan, E. Ateia, N. Darwish, S. Halim and A. Abd El-Aziz, "Effect of filler concentration on the physico-mechanical properties of super abrasion furnace black and silica loaded styrene butadiene rubber", Materials & Design, vol. 34, pp. 533-540, 2012. Available: 10.1016/j.matdes.2011.05.005. 114. V. Panwar and K. Pal, Dynamic performance of an amorphous polymer composite under controlled loading of reduced graphene oxide based on entanglement of filler with polymer chains. 181 115. M. Viyanage, T. Manage, R. De Silva, L. Nayanajith, M. Milani and I. Kottegoda, "Mechanical property evaluation of natural rubber/ vein graphite composites", Sri Lankan Journal of Physics, vol. 22, no. 1, p. 29, 2021. Available: 10.4038/sljp. v22i1.8082. 116. A. Formisano, L. Boccarusso, F. Minutolo, L. Carrino, M. Durante and A. Langella, "Wear behaviour of epoxy resin filled with hard powders", 2016. Available: 10.1063/1.4963409. 117. I. Ulfah et al., "Influence of Carbon Black and Silica Filler on the Rheological and Mechanical Properties of Natural Rubber Compound", Procedia Chemistry, vol. 16, pp. 258-264, 2015. Available: 10.1016/j.proche.2015.12.053. 118. M. D. Nomula et al., “Investigation of abrasive wear properties of graphite reinforced pa66 polymer composites”, International Journal of Recent Scientific Research, Vol. 6, Issue, 4, pp.3272-3279, April, 2015 119. A. Shanmugharaj et al., "Study on the effect of silica–graphite filler on the rheometric, mechanical, and abrasion loss properties of styrene–butadiene rubber vulcanizates", Journal of Elastomers & Plastics, vol. 51, no. 4, pp. 359-378, 2018. Available: 10.1177/0095244318787560. 120. S. Prakash et al., “Abrasive wear behavior of graphite filled e-glass fibre reinforced polyester composites”, International Research Journal of Engineering and Technology, vol. 05 Issue: 04, Apr-2018. 121. C. H. L. Srinivas et al., “Abrasive wear properties of graphite filled pa6 polymer composites”, International Journal of Mechanical Engineering and Robotics Research, Vol. 1, No. 3, October 2012. 122. H. Hassan, E. Ateia, N. Darwish, S. Halim and A. Abd El-Aziz, "Effect of filler concentration on the physico-mechanical properties of super abrasion furnace black and silica loaded styrene butadiene rubber", Materials & Design, vol. 34, pp. 533-540, 2012. Available: 10.1016/j.matdes.2011.05.005. 123. K. Ahmed, S. Nizami, N. Raza and K. Mahmood, "Mechanical, swelling, and thermal aging properties of marble sludge-natural rubber composites", International Journal of Industrial Chemistry, vol. 3, no. 1, p. 21, 2012. Available: 10.1186/2228- 5547-3-21. 124. F. Aguele, C. Madufor and K. Adekunle, "Comparative Study of Physical Properties of Polymer Composites Reinforced with Uncarbonised and Carbonised Coir", 2021. 125. B. Suresha, Siddaramaiah, Kishore, S. Seetharamu and P. Kumaran, "Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites", Wear, vol. 267, no. 9- 10, pp. 1405-1414, 2009. Available: 10.1016/j.wear.2009.01.026. 126. D. Mahata et al., "Guayule natural rubber composites: impact of fillers on their cure characteristics, dynamic and mechanical behavior", Iranian Polymer Journal, vol. 29, no. 5, pp. 393-401, 2020. Available: 10.1007/s13726-020-00803-x. 127. Y. Sato et al., "Reinforcement of rubber using radial single-walled carbon nanotube soot and its shock dampening properties", Carbon, vol. 46, no. 11, pp. 1509- 1512, 2008. Available: 10.1016/j.carbon.2008.06.019. 128. I. Igwe and A. Ejim, "Studies on Mechanical and End-Use Properties of Natural Rubber Filled with Snail Shell Powder", Materials Sciences and Applications, vol. 02, no. 07, pp. 801-809, 2011. Available: 10.4236/msa.2011.27109. 129. A. Balachandran Nair, P. Kurian and R. Joseph, "Ethylene–propylene–diene terpolymer/hexa fluoropropylene–vinylidinefluoride dipolymer rubber blends: Thermal and mechanical properties", Materials & Design (1980-2015), vol. 36, pp. 767-778, 2012. Available: 10.1016/j.matdes.2011.11.062. 182 130. A.E. Khadom et al. “Influence of Carbon Allotropes on Some Physical Properties of Natural Rubber (NR)”, 2010, Available: https://www.researchgate.net/publication/308787342 Influence of Carbon Allotropes on Some Physical Properties of Natural Rubber NR 131. E. Osabohien et al., “Calamus deerratus fibre reinforced natural rubber vulcanizates”, Int. J. Biol. Chem. Sci., 9(2): 1094-1106, April 2015, Available: DOI: 10.4314/ijbcs. v9i2.45 132. Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM D792, 2013 133. E. Hutagaol et al., “The Effect of Rubber Recycles Variation as A Non- reinforcing Filler on Functional Group, Microscopic Structure and Mechanical Properties”, AIP Conference Proceedings 2242, 020017 (2020); https://doi.org/10.1063/5.0007977 Published Online: 01 June 2020 134. M. Eslamian, R. Bagheri and G. Pircheraghi, "Co-crystallization in ternary polyethylene blends: tie crystal formation and mechanical properties improvement", Polymer International, vol. 65, no. 12, pp. 1405-1416, 2016. Available: 10.1002/pi.5191. 135. W. Wei et al., "Improving the Damping Properties of Nanocomposites by Monodispersed Hybrid POSS Nanoparticles: Preparation and Mechanisms", Polymers, vol. 11, no. 4, p. 647, 2019. Available: 10.3390/polym11040647. 136. Tainstruments.com, 2021. [Online]. Available: http://www.tainstruments.com/pdf/literature/ AAN016_V1_U_StructFluids.pdf. 137. T. Mokhena, M. Mochane, J. Sefadi, S. Motloung and D. Andala, "Thermal Conductivity of Graphite-Based Polymer Composites", 2019, Available: 10.5772/intechopen.75676. 138. Lebedev S, Gefle O, Amitov E, Berchuk DY, Zhuravlev D. Poly (lactic acid)- based polymer composites with high electric and thermal conductivity and their characterization. Polymer Testing. 2017;58:241-248. DOI: 10.1016/j.polymertesting.2016.12.033 139. Yuan W, Xiao Q, Li L, Xu T. Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Applied Thermal Engineering. 2016;106:1067-1074. DOI: 10.1016/j.applthermaleng.2016.06.089 140. Mu Q, Feng S. Thermal conductivity of graphite/silicone rubber prepared by solution intercalation. Thermochimica Acta. 2007;462(1-2):70-75. DOI: 10.1016/j.tca.2007.06.006 141. Agrawal, A. and Satapathy, A. (2013) “Development of a heat conduction model and investigation on thermal conductivity enhancement of ALN/Epoxy Composites,” Procedia Engineering, 51, pp. 573–578. Available at: https://doi.org/10.1016/j.proeng.2013.01.081. 142. Somaweera, D. et al. (2022) “Effect of vein graphite powder on mechanical, curing, and thermal properties of Solid Tire Vulcanizate,” Materials Today: Proceedings, 59, pp. 316–323. Available at: https://doi.org/10.1016/j.matpr.2021.11.181. 143. Lu, X. and Xu, G. (1997) “Thermally conductive polymer composites for electronic packaging,” Journal of Applied Polymer Science, 65(13), pp. 2733–2738. Available at: https://doi.org/10.1002/(sici)1097-4628(19970926)65:13<2733::aid- app15>3.0.co;2-y. 144. Weidenfeller, B., Höfer, M. and Schilling, F.R. (2004) “Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene,” 183 Composites Part A: Applied Science and Manufacturing, 35(4), pp. 423–429. Available at: https://doi.org/10.1016/j.compositesa.2003.11.005. 145. Tavman, I.H. (1997) “Thermal and mechanical properties of copper powder filled poly (ethylene) composites,” Powder Technology, 91(1), pp. 63–67. Available at: https://doi.org/10.1016/s0032-5910(96)03247-0. 146. Boudenne, A. et al. (2004) “Thermophysical properties of polypropylene/aluminum composites,” Journal of Polymer Science Part B: Polymer Physics, 42(4), pp. 722–732. Available at: https://doi.org/10.1002/polb.10713. 147. Gowayed, Y. and Hwang, J.-C. (1995) “Thermal conductivity of composite materials made from plain weaves and 3-D weaves,” Composites Engineering, 5(9), pp. 1177–1186. Available at: https://doi.org/10.1016/0961-9526(94)00106-j. 148. Hashin, Z. (1979) “Analysis of properties of fiber composites with anisotropic constituents,” Journal of Applied Mechanics, 46(3), pp. 543–550. Available at: https://doi.org/10.1115/1.3424603. 149. Reifsnider, K.L. et al. (1986) “Assessment of simplified composite micromechanics using three-dimensional finite-element analysis,” Journal of Composites Technology and Research, 8(3), p. 77. Available at: https://doi.org/10.1520/ctr10326j. 150. Muralidhar, K. (1990) “Equivalent conductivity of a heterogeneous medium,” International Journal of Heat and Mass Transfer, 33(8), pp. 1759–1766. Available at: https://doi.org/10.1016/0017-9310(90)90030-x. 151. Springer, G.S. and Tsai, S.W. (1967) “Thermal conductivities of unidirectional materials,” Journal of Composite Materials, 1(2), pp. 166–173. Available at: https://doi.org/10.1177/002199836700100206. 152. Pal, R. (2007) “New models for thermal conductivity of particulate composites,” Journal of Reinforced Plastics and Composites, 26(7), pp. 643–651. Available at: https://doi.org/10.1177/0731684407075569. 153. McCullough, R.L. (1985) “Generalized combining rules for predicting transport properties of composite materials,” Composites Science and Technology, 22(1), pp. 3–21. Available at: https://doi.org/10.1016/0266-3538(85)90087-9. 154. Uvarov, N. (2000) “Estimation of composites conductivity using a general mixing rule,” Solid State Ionics, 136-137(1-2), pp. 1267–1272. Available at: https://doi.org/10.1016/s0167-2738(00)00585-3. 155. Nan, C.-W. et al. (1997) “Effective thermal conductivity of particulate composites with Interfacial Thermal Resistance,” Journal of Applied Physics, 81(10), pp. 6692–6699. Available at: https://doi.org/10.1063/1.365209. 156. Alvarez-Guerrero, S. et al. (2022) “Determination of the effective thermal conductivity of particulate composites based on VO2 and SIO2,” International Journal of Thermal Sciences, 172, p. 107278. Available at: https://doi.org/10.1016/j.ijthermalsci.2021.107278. 157. Van Rooyen, M.& W. (1970) Theoretical and practical aspects of the thermal conductivity of soils and similar granular systems, AbeBooks. From: Fundamental and Practical Concepts of soil freezing, Nat Acad Sci, Highway Research Bd. Available at: https://www.abebooks.com/book-search/title/theoretical-practical-aspects- thermal-conductivity/author/rooyen-martinus-winterkorn-hans/ (Accessed: March 3, 2023). 158. Mamunya, Y.P. et al. (2002) “Electrical and thermal conductivity of polymers filled with metal powders,” European Polymer Journal, 38(9), pp. 1887–1897. Available at: https://doi.org/10.1016/s0014-3057(02)00064-2. 159. Achard, F. (2005) “James Clerk Maxwell, a treatise on electricity and magnetism, first edition (1873),” Landmark Writings in Western Mathematics 1640- 184 1940, pp. 564–587. Available at: https://doi.org/10.1016/b978-044450871-3/50125- x. 160. Bruggeman, D.A. (1935) “Berechnung Verschiedener Physikalischer Konstanten von Heterogenen substanzen. i. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen Substanzen,” Annalen der Physik, 416(7), pp. 636–664. Available at: https://doi.org/10.1002/andp.19354160705. 161. Lewis, T.B. and Nielsen, L.E. (1970) “Dynamic mechanical properties of particulate-filled composites,” Journal of Applied Polymer Science, 14(6), pp. 1449– 1471. Available at: https://doi.org/10.1002/app.1970.070140604. 162. Progelhof, R.C., Throne, J.L. and Ruetsch, R.R. (1976) “Methods for predicting the thermal conductivity of composite systems: A Review,” Polymer Engineering and Science, 16(9), pp. 615–625. Available at: https://doi.org/10.1002/pen.760160905. 163. Mokhena, T.C. et al. (2018) “Thermal conductivity of graphite-based polymer composites,” Impact of Thermal Conductivity on Energy Technologies [Preprint]. Available at: https://doi.org/10.5772/intechopen.75676. 164. “GS-3772 expandable graphite,” GraphiteStore, https://www.graphitestore.com/gs-3772-expandable graphite#:~:text=Depending%20upon%20the%20grade%20of,with%20tim %20or%20environmental%20exposure. (accessed Jan. 7, 2024). 165. R. Al Shannaq and M. M. Farid, “Microencapsulation of Phase Change Materials (pcms) for Thermal Energy Storage Systems,” Advances in Thermal Energy Storage Systems, pp. 247–284, 2015. doi:10.1533/9781782420965.2.247 166. “Commercial mobility,” Solid Tyres | Continental tyres, https://www.continental-tyres.co.uk/b2b/material-handling/solid-tyres/ (accessed Jan. 7, 2024). 167. “How TzeroTM Technology Improves DSC Performance, Part I: Flat Baseline and Glass Transition Measurements”, TA Instruments Applications Note. 168. ASTM E1269 “Specific Heat Capacity by Differential Scanning Calorimeter”, Annual Book of ASTM Standards, Vol. 14.02.