T H E U N I V E R S I T Y O F C A L G A R Y A I R P O R T T E R M I N A L S - O P T I M U M C O N F I G U R A T I O N S A N D G A T E P O S I T I O N R E Q U I R E M E N T B Y J. M . S. J. B A N D A R A A THESfs* 0 S U B M I T T E D T O T H E F A C U L T Y O F G R A D U A T E S T U D I E S IN P A R T I A L F U L F I L L M E N T O F T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F D O C T O R O F P H I L O S O P H Y lll-J-- 7 ZS .-3Q D E P A R T M E N T O F CIVIL E N G I N E E R I N G C A L G A R Y , A L B E R T A D E C E M B E R , 1989 © J. M . S. J. B A N D A R A 1989 5407? T H E U N I V E R S I T Y O F C A L G A R Y F A C U L T Y O F G R A D U A T E S T U D I E S T h e u n d e r s i g n e d ce r t i f y t h a t t h e y have r e a d , a n d r e c o m m e n d t o t h e F a c u l t y o f G r a d u a t e Stud ies fo r acceptance, a thesis e n t i t l e d , " A i r p o r t T e r m i n a l s - O p t i m u m C o n f i g u r a t i o n s a n d Ga te P o s i t i o n R e q u i r e m e n t " , s u b m i t t e d b y J . M . S. J . B a n d a r a i n p a r t i a l f u l f i l l m e n t o f t he requ i r emen ts fo r t h e degree o f D o c t o r o f Ph i l osophy . 54075 C h a i r m a n , D r . S. C . W i r a s i n g h e D e p a r t m e n t o f C i v i l E n g i n e e r i n g D r . J . F . M o r r a l l D e p a r t m e n t o f C i v i l E n g i n e e r i n g D a t e D r . S. G . H a m z a w i t T r a n s p o r t C a n a d a , O t t a w a Dr- ; D . Wa te rs F a c u l t y o f M a n e g e m e n t ///' licit ' i tl/L, D r . V . Tosic U n i v e r s i t y o f Be lgrade A b s t r a c t Passenger w a l k i n g d is tance is a m a j o r cons ide ra t i on in d e t e r m i n i n g t he g e o m e t r y o f an a i r p o r t t e r m i n a l c o n f i g u r a t i o n . T h e n u m b e r o f a i r c ra f t ga te pos i t i ons a n d t he expec ted passenger m i x are t he s ign i f i can t e lements to be cons idered i n p l a n n i n g new t e r m i n a l b u i l d i n g s . T w o d i f fe ren t m e t h o d s : l ) level o f service m e t h o d , 2) m i n i m u m cost m e t h o d , are r e p o r t e d t o d e t e r m i n e the gate p o s i t i o n requ i remen t . T h e level o f serv ice m e t h o d is used t o ca l cu la te t he n u m b e r o f ga te pos i t ions t h a t are requ i red t o p r o v i d e a g iven level o f r e l i ab i l i t y . T h e randomness of the re levant pa rame te rs ; a i r c ra f t a r r i v a l ra te a t t h e gate pos i t i ons , gate occupancy t i m e a n d the a i r c ra f t s e p a r a t i o n t i m e a t gates , is t aken i n t o account i n the analys is . T h e gate r e q u i r e m e n t at C a l g a r y I n t e r n a t i o n a l A i r p o r t is ana lyzed for c o m m o n a n d p re fe ren t ia l gate use po l ic ies . I n the m i n i m u m cost m e t h o d , an o p t i m u m n u m b e r o f gate pos i t i ons t h a t w i l l m i n i m i z e t he s u m of the cost o f gates a n d the cost o f delay t o a i r c ra f t is o b t a i n e d . A n a p p r o x i m a t e p rocedu re t o d e t e r m i n e t he d e t e r m i n i s t i c delay t o a i r c r a f t , based o n t he i n f o r m a t i o n rega rd ing t h e peak ing of t he a i r c ra f t a r r i v a l r a te a n d t he n u m b e r o f peaks per day is p resented . C losed - fo rm so lu t ions are o b t a i n e d fo r t he cases o f one peak a n d several i den t i ca l n o n - ove r l app ing peaks respect ive ly . T h e o p t i m u m n u m b e r o f gates r equ i r ed for the C a l g a r y I n t e r n a t i o n a l A i r p o r t , based o n a c o m m o n gate use po l i cy , is r e p o r t e d . G i v e n t he size o f a t e r m i n a l i n t e rms of the n u m b e r o f a i r c ra f t gates, an ana­ l y t i c a l express ion is o b t a i n e d for the mean passenger w a l k i n g d is tance based o n : the f r a c t i o n o f a r r i v i n g , d e p a r t i n g a n d t r a n s f e r r i n g ( h u b a n d n o n - h u b ) passengers; i i i g a t e s p a c i n g ; s p a c i n g r e q u i r e m e n t f o r a i r c r a f t m a n e u v e r i n g ; a n d t h e t e r m i n a l b l o c k d i m e n s i o n s . C o m m o n l y u s e d c o n f i g u r a t i o n s o f p i e r , s a t e l l i t e a n d p i e r - s a t e l l i t e t e r ­ m i n a l s a r e c o n s i d e r e d f o r t h e a n a l y s i s . It is a s s u m e d t h a t all a i r c r a f t p a r k i n g p o s i t i o n s a r e c a p a b l e o f h a n d l i n g a n y t y p e o f a i r c r a f t a n d a r r i v i n g , d e p a r t i n g a n d n o n - h u b t r a n s f e r r i n g p a s s e n g e r s a r e e q u a l l y d i s t r i b u t e d a m o n g all t h e g a t e p o s i ­ t i o n s . T w o g r o u p s o f h u b t r a n s f e r s a r e d e f i n e d t o a c c o m m o d a t e d i f f e r e n t l e v e l s o f h u b a n d s p o k e o p e r a t i o n s . A c o n t i n u u m a p p r o x i m a t i o n is u s e d t o m o d e l p a s s e n g e r w a l k i n g w i t h i n t h e p i e r s o r t h e s a t e l l i t e s . W a l k i n g d i s t a n c e b e t w e e n t h e p i e r s o r t h e s a t e l l i t e s a r e m o d e l e d u s i n g d i s c r e t e m e t h o d s . T h e o p t i m u m g e o m e t r y i n t e r m s o f t h e n u m b e r o f p i e r s o r s a t e l l i t e s a n d t h e i r s i z e s , is o b t a i n e d b y m i n i m i z i n g t h e m e a n w a l k i n g d i s t a n c e f o r all t h e p a s s e n g e r s . W h e n t h e r e is n o c l o s e d - f o r m s o l u t i o n f o r t h e o p t i m u m n u m b e r o f p i e r s o r s a t e l l i t e s , l o w e r a n d u p p e r b o u n d s o f t h e o p t i m u m n u m b e r o f p i e r s o r s a t e l l i t e s is o b t a i n e d s o t h a t t h e o p t i m u m g e o m e t r y c a n b e o b t a i n e d u s i n g n u m e r i c a l m e t h o d s . T h e o p t i m u m n u m b e r o f p i e r s o r s a t e l l i t e s is p r o p o r t i o n a l t o t h e s q u a r e r o o t o f t h e t o t a l n u m b e r o f g a t e s f o r s o m e o f t h e c o n f i g u r a t i o n s . T h e p r o b a b i l i t y d i s t r i b u t i o n o f t h e w a l k i n g d i s t a n c e o f a p a s s e n g e r is g e n e r a t e d b y s i m u l a t i o n . G i v e n a n a c c e p t a b l e m a x i m u m w a l k i n g d i s t a n c e , s e v e r a l s t a t i s t i c a l p a r a m e t e r s t h a t a r e s u i t a b l e to c h o o s e t h e b e s t c o n f i g u r a t i o n f r o m a m o n g s e v e r a l o p t i m u m g e o m e t r i e s a r e s u g g e s t e d . A n u m e r i c a l e x a m p l e t o i l l u s t r a t e t h e s e l e c t i o n o f t h e b e s t t e r m i n a l g e o m e t r y f o r t h e L a G u a r d i a m a i n t e r m i n a l , A t l a n t a H a r t s f i e l d t e r m i n a l a n d f o r a h y p o t h e t i c a l t e r m i n a l is p r e s e n t e d . E x a m p l e s t o i l l u s t r a t e t h e e f f e c t o f p e o p l e m o v e r s y s t e m s o n w a l k i n g d i s t a n c e a n d t h e u s e o f t h e s u g g e s t e d t e c h n i q u e t o r a t e r m i n a l e x p a n s i o n s i t u a t i o n a r e a l s o g i v e n . iv A c k n o w l e d g e m e n t s I w o u l d l ike t o express m y sincere t h a n k s t o a l l o f those w h o c o n t r i b u t e d i n some w a y t o the deve lopmen t o f th i s research. I a m p a r t i c u l a r l y i n d e b t e d t o t he c h a i r m a n o f t he thesis c o m m i t t e e Professor S. C. W i r a s i n g h e , w h o m I t h a n k fo r h is gu idance a n d encouragemen t t h r o u g h o u t t he t i m e p e r i o d o f th i s research. H is resourcefulness a n d cons t r uc t i ve c r i t i c i sms c o n t r i b u t e d in m a n y ways t o e x p a n d t h e l i m i t s o f m y o w n capac i ty . I sha l l a lways be g ra te fu l t o h i m . M y a p p r e c i a t i o n is also ex tended to the r e m a i n i n g m e m b e r s o f t he thesis c o m ­ m i t t e e , Professor J . F. M o r r a l l , D r . S. G . H a m z a w i , D r . D . Wate rs a n d D r . V . ToSic. I was g rea t l y benef i ted f r o m the o p p o r t u n i t y t o spend few days a t t he T r a n s ­ p o r t C a n a d a head-off ice i n O t t a w a w i t h D r . H a m z a w i . A spec ia l t h a n k s goes t o D r . U . V a n d e b o n a w h o gave me a h e l p i n g h a n d to f am i l i a r i ze myse l f w i t h s i m u l a ­ t i o n techn iques. M s . L i n d a M a k r a y o f Ca lga ry I n t e r n a t i o n a l A i r p o r t a n d M r . Pe te r B i o n c o n i o f Vancouver I n t e r n a t i o n a l A i r p o r t he lped me i n g a t h e r i n g a i r c ra f t o p e r a t i o n a l d a t a . A i r p o r t a n d a i r l i ne representa t ives a t Seat t le , D a l l a s / F o r t W o r t h , T a m p a , A t l a n t a , T o r o n t o , M i r a b e l , D o r v a l a n d C a l g a r y a i r p o r t s w h o he lped m e d u r i n g m y v is i t s s h o u l d also be m e n t i o n e d . T h i s research was made possib le by the N a t u r a l Science a n d E n g i n e e r i n g Re­ search C o u n c i l o f C a n a d a g r a n t N o . A 4 7 1 1 , a T r a n s p o r t C a n a d a U n i v e r s i t y P r o ­ g r a m research c o n t r a c t a n d b y a U n i v e r s i t y o f C a l g a r y G r a d u a t e Teach ing Assis- t a n t s h i p . T h e U n i v e r s i t y o f M o r a t u w a , Sr i L a n k a p r o v i d e d me w i t h s t u d y leave t o achieve th is goa l . v I a m g r a t e f u l t o m y pa ren ts for t h e i r encou ragemen t , s u p p o r t t h r o u g h o u t m y persona l g r o w t h a n d b a r i n g m y long absence at a m u c h needed t i m e . F i n a l l y I w i s h t o t h a n k m y w i fe N i l a n t h i fo r her pa t ience , encou ragemen t , u n d e r s t a n d i n g a n d cons tan t love d u r i n g o u r l i fe a t Ca lga ry , a n d m y d a u g h t e r V i r a j i w h o b r o u g h t t he i n s p i r a t i o n . vi Con ten ts A b s t r a c t i i i A c k n o w l e d g e m e n t s v N o t a t i o n x v 1 I N T R O D U C T I O N 1 1.1 A I R P O R T P L A N N I N G 1 1.2 T E R M I N A L P L A N N I N G A N D D E S I G N 2 1.3 P R O B L E M S T A T E M E N T 4 1.4 O U T L I N E O F R E S E A R C H 7 2 G A T E P O S I T I O N R E Q U I R E M E N T 1 0 2.1 I N T R O D U C T I O N 10 2.2 L I T E R A T U R E R E V I E W 13 2.3 L E V E L O F S E R V I C E A P P R O A C H 20 2.3.1 Basic Cons ide ra t i ons 20 2.3.2 Stochast ic M o d e l 22 2.3.3 P r o b a b i l i t y D i s t r i b u t i o n o f G 26 2.3.4 D a t a Ana lys i s 27 2.3.5 A p p l i c a t i o n t o Ca lga ry I n t e r n a t i o n a l A i r p o r t 34 2.3.6 Sens i t i v i t y Ana l ys i s 40 2.3.7 N u m e r i c a l I l l u s t r a t i o n 43 2.4 M I N I M U M G E N E R A L I Z E D C O S T A P P R O A C H 46 2.4.1 Basic Cons ide ra t i ons 46 2.4.2 A p p r o x i m a t e D e t e r m i n a t i o n o f De lays t o A i r c r a f t 48 2.4.3 C a l c u l a t i o n o f Delays 51 2.4.4 O p t i m i z a t i o n 61 2.4.5 Several Peaks 64 2.4.6 M o d i f i e d F o r m u l a e 65 2.4.7 A p p l i c a t i o n a n d N u m e r i c a l I l l u s t r a t i o n 67 2.5 S U M M A R Y 78 3 T E R M I N A L C O N F I G U R A T I O N S A N D P A S S E N G E R T Y P E S 8 0 3.1 I N T R O D U C T I O N 80 3.2 T E R M I N A L C L A S S I F I C A T I O N 82 3.2.1 T e r m i n a l Categor ies 83 vi i 3.3 T E R M I N A L D E S I G N 86 3.3.1 Cons ide ra t i ons 86 3.3.2 Q u a n t i t a t i v e Ana l ys i s 90 3.4 T Y P E S O F P A S S E N G E R S A N D P A S S E N G E R D I S T R I B U T I O N . 93 3.4.1 I n t r o d u c t i o n 93 3.4.2 T y p e s o f Passengers 94 3.4.3 Passenger D i s t r i b u t i o n W i t h i n the T e r m i n a l 96 3.4.4 C o n t i n u u m A p p r o x i m a t i o n 101 3.4.5 O p t i m u m Geomet r ies 102 3.5 S U M M A R Y 105 4 PIER F I N G E R T E R M I N A L S 106 4.1 I N T R O D U C T I O N 106 4.2 T E R M I N A L C H A R A C T E R I S T I C S 108 4.2.1 C e n t r a l i z e d - R a d i a l T e r m i n a l s 108 4.2.2 C e n t r a l i z e d - S t a n d a r d T e r m i n a l s I l l 4.2.3 Semi -Cen t ra l i zed T e r m i n a l s 113 •4.3 W A L K I N G D I S T A N C E F O R M U L A T I O N 114 4.3.1 C e n t r a l i z e d - R a d i a l T e r m i n a l 114 4.3.2 C e n t r a l i z e d - S t a n d a r d T e r m i n a l s 118 4.3.3 Semi -Cen t ra l i zed T e r m i n a l s 122 4.4 O P T I M U M G E O M E T R I E S 124 4.4.1 C e n t r a l i z e d - R a d i a l T e r m i n a l s 124 4.4.2 C e n t r a l i z e d - S t a n d a r d T e r m i n a l s 129 4.4.3 Semi -Cen t ra l i zed T e r m i n a l s 139 4.5 S U M M A R Y 145 5 C E N T R A L I Z E D SATELLITE T E R M I N A L S 149 5.1 I N T R O D U C T I O N 149 5.2 T E R M I N A L C H A R A C T E R I S T I C S 154 5.2.1 C e n t r a l i z e d - C i r c u l a r Sate l l i tes 154 5.2.2 C e n t r a l i z e d - R e c t a n g u l a r Sate l l i tes 157 5.2.3 Cen t ra l i zed T - s h a p e d Sate l l i tes 160 5.2.4 Cen t ra l i zed Y - S h a p e d Sate l l i tes 163 5.3 W A L K I N G D I S T A N C E F O R M U L A T I O N 166 5.3.1 C e n t r a l i z e d - C i r c u l a r Sate l l i tes 167 5.3.2 C e n t r a l i z e d - R e c t a n g u l a r Sate l l i tes 168 5.3.3 Cen t ra l i zed T - S h a p e d Sate l l i tes 173 5.3.4 Cen t ra l i zed Y - S h a p e d Sate l l i tes 177 5.4 G E O M E T R I E S F O R M I N I M U M M E A N W A L K I N G D I S T A N C E . 183 vii i 5.4.1 Centralized-Circular Satellites 184 5.4.2 Centralized-Rectangular Satellites 189 5.4.3 Centralized T Shape Satellites 192 5.5 EXAMPLES AND SENSITIVITY ANALYSIS 195 5.6 S U M M A R Y 199 6 S E M I - C E N T R A L I Z E D SATELLITE T E R M I N A L S A N D PIER- SATELLITE T E R M I N A L S 200 6.1 INTRODUCTION 200 6.1.1 Semi-Centralized Satellite Terminals 200 6.1.2 Pier-Satellite Terminals 204 6.2 TERMINAL CHARACTERISTICS 206 6.2.1 Semi-Centralized Circular Satellites 206 6.2.2 Semi-Centralized Rectangular Satellites 208 6.2.3 Semi-Centralized T Shaped Satellites 208 6.2.4 Pier-Satellite Terminals 211 6.3 WALKING DISTANCE FORMULATION 215 6.3.1 Semi-Centralized Circular Satellites 215 6.3.2 Y-Shaped Pier Satellites 219 6.3.3 Centralized T-Shaped Pier Satellites 225 6.4 GEOMETRIES FOR MINIMUM M E A N WALKING DISTANCE . 229 6.4.1 Semi-Centralized Circular Satellites 230 6.4.2 Y-Shaped Pier Satellites 232 6.4.3 T-Shaped Pier Satellites 234 6.5 EXAMPLES AND SENSITIVITY ANALYSIS 235 6.5.1 Semi-Centralized Satellite Terminals 235 6.5.2 Pier Satellite Terminals 241 6.6 S U M M A R Y 242 7 S E L E C T I O N O F B E S T T E R M I N A L G E O M E T R Y 245 7.1 COMPARISON OF OPTIMAL GEOMETRIES 245 7.2 THE SIMULATION M O D E L 247 7.3 CASE STUDIES 250 7.4 BEST TERMINAL TYPE 257 7.5 EFFECTS OF PEOPLE M O V E R SYSTEMS 261 7.6 TERMINAL EXPANSIONS . 262 7.7 S U M M A R Y 265 ix 8 S U M M A R Y 2 6 6 8.1 G A T E P O S I T I O N R E Q U I R E M E N T 266 8.1.1 Level o f Service M e t h o d . 267 8.1.2 M i n i m u m Cos t M e t h o d 268 8.2 T E R M I N A L C O N F I G U R A T I O N S 269 8.3 O P T I M U M G E O M E T R I E S 272 8.4 S E L E C T I O N O F T H E B E S T T E R M I N A L G E O M E T R Y 276 8.5 R E C O M M E N D A T I O N S F O R F U T U R E R E S E A R C H 277 B i b l i o g r a p h y 2 7 9 A M o m e n t G e n e r a t i n g F u n c t i o n 2 8 3 B C o s t C a l c u l a t i o n s 2 8 5 B . l C a p i t a l a n d O p e r a t i n g Cos t o f a Ga te 285 B.2 A i r c r a f t O p e r a t i n g a n d De lay Cost 286 C S e m i - C e n t r a l i z e d S a t e l l i t e T e r m i n a l s 2 8 9 C . l W a l k i n g D is tance F o r m u l a t i o n 289 C . l . l Sem i -Cen t ra l i zed Rec tangu la r Sate l l i tes 289 C.1.2 Sem i -Cen t ra l i zed T - S h a p e d Sate l l i tes 292 C.2 O p t i m u m Geomet r ies 295 C.2.1 Semi -cen t ra l i zed R e c t a n g u l a r Sate l l i tes 295 C.2.2 Semi -Cen t ra l i zed T - S h a p e d Sate l l i tes 296 D A S a m p l e o f S i m u l a t i o n M o d e l O u t p u t 2 9 9 x L is t o f Tables 2.1 H o u r l y A i r c r a f t A r r i v a l s 28 2.2 Ga te Occupancy T i m e s 29 2.3 Resu l ts of x 2 Test 29 2.4 C a l g a r y I n t . A i r p o r t G a t e A s s i g n m e n t 36 2.5 C a l g a r y I n t . A i r p o r t H o u r l y A i r c r a f t A r r i v a l s 36 2.6 S u m m a r y o f O p e r a t i o n a l D a t a 36 2.7 M e a n a n d Var iance o f Ga te R e q u i r e m e n t 37 2.8 M e a n a n d Var iance of A c t u a l Ga te Occupanc ies 38 2.9 N u m b e r o f Gates for G i v e n R e l i a b i l i t y 40 2.10 Ga te Requ i remen ts Based on U t i l i z a t i o n Fac to r 41 2.11 I n p u t Pa ramete rs for N u m e r i c a l I l l u s t r a t i o n 43 2.12 F u t u r e A i r c r a f t A r r i v a l s 44 2.13 F u t u r e Ga te Requ i remen ts 45 2.14 Proper t i es o f Peak Per iods 71 -2.15 Expec ted Delays 71 3.1 Possib le C o m b i n a t i o n s o f T e r m i n a l Concepts 86 3.2 A i r c r a f t H a n d l i n g Capab i l i t i es - Vancouver I n t 98 3.3 C r i t i c a l S igni f icance Levels for x 2 Test 99 5.1 O p t i m u m N u m b e r o f C i r c u l a r Satel l i tes 196 5.2 O p t i m u m N u m b e r o f Rec tangu la r Satel l i tes 196 5.3 O p t i m u m N u m b e r o f T - S h a p e d Sate l l i tes 197 5.4 L e n g t h of Sate l l i te Connec to rs 198 6.1 O p t i m u m N u m b e r o f Semi -Cen t ra l i zed C i r c u l a r Sate l l i tes 236 6.2 O p t i m u m N u m b e r o f Semi -Cen t ra l i zed Rec tangu la r Sate l l i tes . . . . 236 6.3 O p t i m u m N u m b e r o f Semi -Cen t ra l i zed T - S h a p e d Sate l l i tes 237 6.4 S u b - O p t i m u m Geomet r ies (Semi -Cen t ra l i zed C i r c u l a r (3 = 180°) . . . 239 6.5 S u b - O p t i m u m Geomet r ies (Semi -Cen t ra l i zed C i r c u l a r f3 = 270°) . . . 240 6.6 Spac ing Be tween T e r m i n a l B locks 241 6.7 O p t i m u m N u m b e r o f Y - S h a p e d P ier -sa te l l i tes 243 6.8 O p t i m u m N u m b e r o f T - S h a p e d P ie r -Sate l l i tes 243 7.1 T e r m i n a l a n d Passenger Charac te r i s t i cs 252 7.2 E x i s t i n g T e r m i n a l P rope r t i es 253 7.3 M e a n W a l k i n g Dis tances 254 7.4 M e a n Excess W a l k i n g Dis tances 255 x i 7.5 Percentage Exceed ing Acceptable Walking Distances 2 5 6 B . l Aircraft Operat ing Costs 2 8 7 x i i L is t o f F igures 1.1 Airport Planning Process 3 2.1 Cumulat ive Distribution of G - Whole day 3 0 2.2 Cumulat ive Distribution of G - Peak 6 hr 31 2 .3 Cumulat ive Distribution of G - Peak 3 hr 32 2.4 Cumulat ive Distribution of G - Peak hour 3 3 2 .5 Terminal Layout P l a n 35 2 .6 Arrival R a t e Curve 4 9 2 .7 Aircraft Arrival R a t e Curve - Denver 52 2 .8 Aircraft Arrival R a t e Curve - L a G u a r d i a 5 3 2 .9 Aircraft Arrival R a t e Curve - At lanta 5 4 2 . 1 0 Aircraft Arrival R a t e Curve - San Franc i sco 5 5 2 .11 Aircraft Arrival R a t e Curve - Ca lgary 5 6 2 .12 Parabo l i c Shape Arrival R a t e Curve 5 8 2 .13 Triangular Shape Arrival R a t e Curve 6 0 2 .14 Arrival R a t e Curve W i t h Asymmetr i ca l Peaks 6 6 2 . 1 5 Cumulat ive Aircraft Arrivals -Calgary 6 9 2 . 1 6 Arrival R a t e Curve -Ca lgary 7 0 2 .17 Parabo l i c Shape Peak 76 2 .18 Triangular Shape Peak 77 3.1 Terminal Configurations 8 4 4 .1 P ier -F inger Terminal Configurations 107 4 .2 Central ized-Radial Terminal 1 0 9 4 .3 Centra l i zed-Standard Terminal 112 4 .4 Semi-Central ized Terminal 1 1 5 4 .5 Centra l i zed-Standard Terminal (General Case ) 1 1 9 4 .6 O p t i m u m Number of Piers - Central ized-Radial Terminal 1 3 0 4 .7 O p t i m u m Geometries - Centra l i zed-Standard Terminal 1 3 5 4 .8 O p t i m u m Number of Piers - Centra l i zed-Standard Terminal 1 4 0 4 .9 Modified Terminal Geometry 144 4 . 1 0 O p t i m u m Number of Piers - Semi-Central ized Terminal 1 4 6 4 .11 Irregularities in the O p t i m u m Number of Piers 147 5.1 Satellite Terminal Geometries 150 5 .2 Central ized Satellite Terminal 152 5.3 Central ized-Circular Satellites 155 x i i i 5.4 T y p e I Centra l i zed-Rectangular Satellites 5 .5 T y p e II Centra l i zed-Rectangular Satellites 5 .6 T y p e I Central ized T - S h a p e d Satellites 5.7 T y p e II Central ized T-Shaped Satellites 5 .8 T y p e I Central ized Y - S h a p e d Satellites 5 .9 T y p e II Central ized Y - S h a p e d Satellites 5 .10 R e c t a n g u l a r Satellite 5 .11 T - S h a p e d Satell ite 5 .12 Y - S h a p e d Satellite 6.1 Semi-Central ized Satellite Terminal 6 .2 Pier-Satel l i te Terminals 6.3 Semi-Central ized Circular Satellites 6 .4 Semi-Central ized R e c t a n g u l a r Satellites 6 .5 Semi-Central ized T-Shaped Satellites 6 .6 Semi-Central ized Y - S h a p e d Pier-Satel l i tes 6 .7 Semi-Central ized T - S h a p e d Pier-Satel l i tes 6 .8 Y - S h a p e d Pier Satellite 6 .9 Dual Concourse Terminal 6 . 1 0 T-Shaped Pier Satellite 7.1 Best Terminal T y p e - Few Hub Transfers 7.2 Best Terminal T y p e - Hub Only Terminal 7.3 Geometries for the E x p a n d e d Terminal x i v N o t a t i o n oy - T h e c learance requirement for aircraft parking at the intersection of two satell ite a r m s in T-shaped satellites. ay - T h e c learance requirement for aircraft parking at the intersection of two satell ite a r m s in Y - s h a p e d satellites. A - Arrival r a t e of a ircraft . A - Mean arrival r a t e . AE - A r e a between the arrival r a t e curve and the service r a t e curve . AM - M a x i m u m aircraft arrival r a t e during a peak period. AMP - M a x i m u m aircraft arrival r a t e a t any part icu lar t ime. Ap - Peak hour aircraft arrivals . Ap - E x p e c t e d value of peak hour aircraft arrivals . A(t) - Aircraft arrival r a t e at t ime t. bp - Combined mean walk for arriving and depart ing passengers within the terminal block in pier terminals . bs - Combined m e a n walk for arriving and depart ing passengers within the terminal block in satell ite terminals . 6^ - Number of schedule flights at t ime t. Boc - Shortest d is tance between the intersection point of the extended connector centerlines and the per imeter of the largest satellite in a semi-centralized c ircular satell ite. B O R - Shortest d is tance between the intersection point of the extended connector centerlines and the perimeter of the largest satellite in a semi-central ized rec tangular satell ite. a' a' -4(AM-A)/T*. - 2{AM-A)/T0. xv BOT - Shortest d is tance between the intersection point of the extended connector centerlines and the perimeter of the largest satell ite in a semi- central ized T-shaped satellite. Be - Shortest distance between the intersection point of the ex tended connec tor centerlines and the per imeter of a central ized c ircular satell ite. BRI - Shortest d is tance between the intersection point of the extended connec tor centerlines and the per imeter of a centralized type I rec tangu lar satell ite. BR2 - Shortest distance between the intersection point of the extended connec tor centerlines and the perimeter of a centralized type II rec tangular satell ite. BT - Shortest d is tance between the intersection point of the ex tended connec tor centerlines and the per imeter of a centralized T-shaped satell ite. By - Shortest d is tance between the intersection point of the extended connec tor centerlines and the per imeter of a central ized Y - s h a p e d satell ite. Byp - Shortest d is tance between the intersection point of the extended connec tor centerlines and the per imeter of a central ized Y - s h a p e d pier- satell ite. BTP - Shortest d is tance between the intersection point of the extended connector centerlines and the perimeter of a centralized T- shaped pier-satell ite. BM - Min imum c learance requirement between the terminal block and a satell ite. c - Marginal capi ta l , maintenance and operat ing cost of a ga te position per day. C - Design hour volume for aircraft arrivals and departures . Cg - G a t e capaci ty . C0p - Annual operat ing cost . C{ - Wing tip c learance . CT - Tota l delay and capi ta l cost . CCS - Central ized c ircular satellite. CRP - Central ized radial pier. CRS - Central ized rectangular satell ite. x v i CSP - Central ized s t a n d a r d satell ite. CTS - Central ized T-shaped satellites CTPS - Central ized T-shaped pier-satellite. CYPS - Central ized Y - s h a p e d pier-satell ite. Ds - M a x i m u m distance from the intersection point of the extended connector centerlines to the per imeter of the terminal block. DT - Tota l delay to aircraft per hour. E - T0(AM - A)/AB. F - Cumulat ive density function of T y p e I e x t r e m e value distribution. 9a - G a t e requirement for a% reliability. G - Number of gate positions. GL - Lower bound of the ga te position requirement . k - Average cost of delay to airline and passengers per a ircraft per hour. K0 - 1 + P . Kt - 1 + P - \PQjZ. Kir - l + P-APQr/2. - 1 + P - 4 P Q r o / 3 . K2 - 1 + P - 2PQ. K2ra - 1 + P - 2 P Q r G . K-iro - 1 + P - 2 P Q r 0 . Kzr - 2 P Q ( 1 - r ) . K4 - 2 P ( 1 - Q). Kir - 2 P ( 1 -Qr). - 1 + P - 2PQra/3. L - Total length of the piers. xv ii file:///PQjZ lm - Length of the main a r m of the largest satell ite. Imax - Per imeter length of the largest rec tangular satell ite. ls - Length of a secondary a r m of the largest satell ite. L a - Length requirement for aircraft parking. Lr - Tota l linear gate frontage. L\ - L inear gate frontage for the itk satellite. m - Number of tax i lanes. m t- - Percentage of type i a ircraft in fleet mix . n - Number of piers or satellites. rij - Number of peaks with the arrival r a t e grea ter t h a n the service r a t e at the ith s tep. N E - O p t i m u m number of piers for a semi-centralized pier satell ite with equal length piers. NL - Lower bound of the o p t i m u m number of piers or satellites. N u - Upper bound of the o p t i m u m number of piers or satell ites. N* - O p t i m u m number of piers or satellites. N(t) - Tota l number of aircraft occupying gate positions. O - Intersection point of the extended connector centerlines. p(t) - T h e probabil ity t h a t a flight is present a t a gate position. P - Frac t ion of transfers with respect the to ta l number of passengers . P' - Frac t ion of transfers with respect to the tota l enplanements . Pe - T h e percentage of passengers t h a t walk more than the specified m a x i m u m distance. Q - Frac t ion of hub transfers . Q(t) - Aircraft queue at t ime t. x v i i i r - Frac t ion of hub transfers t h a t are known to depart from the arrival pier or satell ite only. ra - r + ( l - r ) / n . rQ - (n - 1 ) (1 - r ) / n . R - Inscribed radius of the pier base. Rs - Radius of a c ircular satellite. S - Spacing between two piers or centralized satellites. Sc - Spacing between two semi- centralized c ircular satellites. Sg - Spacing between two ga te positions. SR - Spacing between two semi-centralized rectangular satell ites. ST - Spacing between two semi-centralized T-shaped satellites. Syp - Spacing between two central ized Y-shaped pier- satellites. STP - Spacing between two centralized T - shaped pier- satellites. Si - Perpendicular c learance requirement at each pier base in radial pier termi­ nals. SCS - Semi-centralized c ircular satellite. SPP - Semi-centralized parallel pier. SRS - Semi-centralized rec tangular satellite. STS - Semi-central ized T-shaped satellite. t - T i m e . tm - T i m e at which the aircraft arrival r a t e is a m a x i m u m . ts - Aircraft separat ion t ime. Is - Mean of the aircraft separat ion t ime. T - G a t e occupancy t ime. T - Mean gate occupancy t ime. x i x To - T i m e during which aircraft arrival r a t e exceed its m e a n value. U - G a t e utilization factor . tut- - A port ion of average walking dis tance in a centra l ized-s tandard pier termi­ nal. W - Mean walking distance for all passengers. WA - Mean walking dis tance for arriving and depart ing passengers. WE - Exces s walking distance . WE - Excess mean walking distance. WH - Mean walking dis tance for hub transfers. WJJI - Mean walking dis tance for hub transfers t h a t are known to depart from the arrival pier or satell ite. WH2 - Mean walking dis tance for hub transfers t h a t are equally likely to depart from any ga te in the terminal . W-max - Acceptable m a x i m u m walking distance . WN - Mean walking dis tance for non-hub transfers . Wp - W i d t h of a pier. Ws - W i d t h of a satell ite a r m Wf - Tax i lane width. W -E ighty fifth percenti le of the cumulat ive walking distance distribution. x - Length of a rec tangu lar satell ite. X j - length of the ith pier or a secondary a r m of the ith satell ite. X - E n t r a n c e point from the terminal block to the concourse connect ing the piers in a centra l ized-s tandard pier terminal . y - Width of a rec tangu lar satellite. a - Half of the angle subtended at the center of a c ircular satell ite by a aircraft parked at a gate position. xx 0 - Angle of spread. Ats - E r r o r in the es t imate of ts- AU - E r r o r in the e s t imate of U. 9 - Half of the angle subtended by two piers or satellite connectors at the intersection point of their extended center lines. A - n — A. H - Aircraft service r a t e (aircraft per hour ) . (j,* - O p t i m u m service r a t e . o\ - Variance of a ircraft arrival r a t e . Oq - Variance of ga te position requirement. ajs - Variance of aircraft separat ion t ime. try - Var iance of ga te occupancy t ime. ae x x i