193 REFERENCES [1] A. Ölander, “An Electrochemical Investigation of Solid Cadmium-Gold Alloys,” J. Am. Chem. Soc., vol. 54, no. 10, pp. 3819–3833, Oct. 1932, doi: 10.1021/ja01349a004. [2] G. V. Kurdyumov and L. G. Khandros, “On the ‘Thermoelastic’ Equilibrium on Martensitic Transformations,” Ukr J Phys 2008, vol. 53, no. Special Issue, pp. 211–214, 1949. [3] W. J. Buehler, J. V. Gilfrich, and R. C. Wiley, “Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi,” J. Appl. Phys., vol. 34, no. 5, pp. 1475–1477, May 1963, doi: 10.1063/1.1729603. [4] G. B. Kauffman and I. Mayo, “The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications,” Chem. Educ., vol. 2, no. 2, pp. 1–21, Jun. 1997, doi: 10.1007/s00897970111a. [5] W. J. Buehler and F. E. Wang, “A summary of recent research on the nitinol alloys and their potential application in ocean engineering,” Ocean Eng., vol. 1, no. 1, pp. 105–120, Jul. 1968, doi: 10.1016/0029-8018(68)90019-X. [6] J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 1980-2015, vol. 56, pp. 1078–1113, Apr. 2014, doi: 10.1016/j.matdes.2013.11.084. [7] Y. Liu and Z. Xie, “Detwinning of Shape Memory Alloy,” in Progress in Smart Materials and Structures, Nova Publishers, 2007, pp. 29–65. [8] B. Amin-Ahmadi, R. D. Noebe, and A. P. Stebner, “Crack propagation mechanisms of an aged nickel-titanium-hafnium shape memory alloy,” Scr. Mater., vol. 159, pp. 85–88, Jan. 2019, doi: 10.1016/j.scriptamat.2018.09.019. [9] D. T.W., M. K.N., S. D, and W. C.M., Engineering Aspects of Shape Memory Alloys. Butterworth-Heinemann, 1990. doi: 10.1016/C2013-0-04566-5. [10] D. C. Lagoudas, Ed., Shape Memory Alloys: Modeling and Engineering Applications, 1st ed. Springer US, 2008. Accessed: May 07, 2019. [Online]. Available: https://www.springer.com/gp/book/9780387476841 [11] Y. Liu, Z. Xie, J. Van Humbeeck, and L. Delaey, “Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys,” Acta 194 Mater., vol. 46, no. 12, pp. 4325–4338, Jul. 1998, doi: 10.1016/S1359- 6454(98)00112-8. [12] J. A. Shaw, “A thermomechanical model for a 1-D shape memory alloy wire with propagating instabilities,” 2002. doi: 10.1016/s0020-7683(01)00242-6. [13] “Shape Memory Alloys/Nitinol Melting and Materials.” https://www.saesgetters.com/products-functions/products/shape-memory- alloys/shape-memory-alloys-melting-and-materials (accessed Oct. 24, 2019). [14] M. H. Wu, “Fabrication of Nitinol Materials and Components,” 2002. doi: 10.4028/www.scientific.net/MSF.394-395.285. [15] G. S. Mammano and E. Dragoni, “Functional fatigue of NiTi Shape Memory wires for a range of end loadings and constraints,” Frat. Ed Integrità Strutt., vol. 7, no. 23, Art. no. 23, 2013, doi: 10.3221/IGF-ESIS.23.03. [16] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner, “Structural and functional fatigue of NiTi shape memory alloys,” Mater. Sci. Eng. A, vol. 378, 2004, [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0921509303015144 [17] T. W. Duerig, “Applications of Shape Memory,” Mater. Sci. Forum, vol. 56–58, pp. 679–692, 1990. [18] M. Sreekumar, T. Nagarajan, M. Singaperumal, M. Zoppi, and R. Molfino, “Critical review of current trends in shape memory alloy actuators for intelligent robots,” Ind Robot, 2007, doi: 10.1108/01439910710749609. [19] J. Colorado, A. Barrientos, C. Rossi, and K. S. Breuer, “Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators,” Bioinspir. Biomim., vol. 7, no. 3, p. 036006, Apr. 2012, doi: 10.1088/1748-3182/7/3/036006. [20] T. Duerig, A. Pelton, and D. Stöckel, “An overview of nitinol medical applications,” Mater. Sci. Eng. A, vol. 273–275, pp. 149–160, Dec. 1999, doi: 10.1016/S0921-5093(99)00294-4. [21] N. B. Morgan and M. Broadley, “Taking the Art out of Smart! - Forming Processes and Durability Issues for the Application of Niti Shape Memory Alloys in Medical Devices - International Metallographic Society,” Anaheim, California, Sep. 2003, vol. 2004. Accessed: May 17, 2020. [Online]. Available: 195 https://www.asminternational.org/web/ims/news/amp/- /journal_content/56/10192/CP2003MPMD247/CONFERENCE-PAPER [22] F04 Committee, “Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis,” ASTM International. doi: 10.1520/F2004-05R10. [23] TA Instruments, “DIfferential Scanning Calorimetry (DSC) Basic Theory & Applications Training,” presented at the DSC Training Course, 2009. [24] “Differential Scanning Calorimeters,” TA Instruments. https://www.tainstruments.com/products/thermal-analysis/differential-scanning- calorimeters/ (accessed May 20, 2020). [25] E. Abel, H. Luo, M. Pridham, and A. Slade, “Issues concerning the measurement of transformation temperatures of NiTi alloys,” Smart Mater. Struct., vol. 13, no. 5, p. 1110, 2004, doi: 10.1088/0964-1726/13/5/016. [26] N. Ma, G. Song, and H.-J. Lee, “Position control of shape memory alloy actuators with internal electrical resistance feedback using neural networks,” Smart Mater. Struct., vol. 13, no. 4, pp. 777–783, 2004, doi: 10.1088/0964-1726/13/4/015. [27] G. Song, V. Chaudhry, and C. Batur, “Precision tracking control of shape memory alloy actuators using neural networks and a sliding-mode based robust controller,” Smart Mater. Struct., vol. 12, no. 2, pp. 223–231, 2003, doi: 10.1088/0964-1726/12/2/310. [28] K. Ikuta, M. Tsukamoto, and S. Hirose, “Shape memory alloy servo actuator system with electric resistance feedback and application for active endoscope,” in 1988 IEEE International Conference on Robotics and Automation Proceedings, Apr. 1988, pp. 427–430 vol.1. doi: 10.1109/ROBOT.1988.12085. [29] S. Yan, X. Liu, F. Xu, and J. Wang, “A Gripper Actuated by a Pair of Differential SMA Springs:,” J. Intell. Mater. Syst. Struct., Dec. 2006, doi: 10.1177/1045389X06067110. [30] G. Stiff, M. Rhodes, A. Kelly, K. Telford, C. P. Armstrong, and B. I. Rees, “Long-term pain: Less common after laparoscopic than open cholecystectomy,” Br. J. Surg., vol. 81, no. 9, pp. 1368–1370, Sep. 1994, doi: 10.1002/bjs.1800810939. 196 [31] “Minimally invasive Cardiac surgery(MICS) | Dr Manoj Pradhan.” http://drmanojpradhan.com/minimally-invasive-cardiac-surgerymics (accessed May 16, 2017). [32] “Minimally Invasive Neurosurgery.” https://www.beaumont.org/treatments/minimally-invasive-neurosurgery (accessed May 16, 2017). [33] F. Tendick, S. S. Sastry, R. S. Fearing, and M. Cohn, “Applications of micromechatronics in minimally invasive surgery,” IEEEASME Trans. Mechatron., vol. 3, no. 1, pp. 34–42, Mar. 1998, doi: 10.1109/3516.662866. [34] R. H. Petersen, “Video-assisted thoracoscopic thymectomy using 5-mm ports and carbon dioxide insufflation,” Ann. Cardiothorac. Surg., vol. 5, no. 1, pp. 51–55, Jan. 2016, doi: 10.3978/9055. [35] “Minimally Invasive Neurosurgery.” https://safemedtrip.com/wp- content/uploads/2013/04/Minimally_Invasive_Neurosurgery.jpg (accessed Dec. 07, 2021). [36] “Surgeons Performing Functional Endoscopic Sinus Surgery.” https://c8.alamy.com/comp/H238P1/sinus-surgery-surgeons-performing- functional-endoscopic-sinus-surgery-H238P1.jpg (accessed Dec. 07, 2021). [37] M. C. Carrozza, P. Dario, and L. P. S. Jay, “Micromechatronics in surgery,” Trans. Inst. Meas. Control, Jul. 2016, doi: 10.1191/0142331203tm089oa. [38] T. G. Frank, G. B. Hanna, and A. Cuschieri, “Technological aspects of minimal access surgery,” Proc. Inst. Mech. Eng. [H], vol. 211, no. 2, pp. 129–144, 1997, doi: 10.1243/0954411971534250. [39] J. Catherine, C. Rotinat-Libersa, and A. Micaelli, “Comparative review of endoscopic devices articulations technologies developed for minimally invasive medical procedures,” Appl. Bionics Biomech., vol. 8, no. 2, pp. 151–171, 2011, doi: 10.3233/ABB-2011-0018. [40] J. Ryhänen et al., “Biocompatibility of nickel-titanium shape memory metal and its corrosion behavior in human cell cultures,” J. Biomed. Mater. Res., vol. 35, no. 4, pp. 451–457, Jun. 1997, doi: 10.1002/(sici)1097- 4636(19970615)35:4<451::aid-jbm5>3.0.co;2-g. 197 [41] F04 Committee, “Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants,” ASTM International. doi: 10.1520/F2063-05. [42] P. Mucksavage, D. C. Kerbl, D. L. Pick, J. Y. Lee, E. M. Mcdougall, and M. K. Louie, “Differences in grip forces among various robotic instruments and da vinci surgical platforms,” J. Endourol., vol. 25, no. 3, pp. 523–528, 2011, doi: 10.1089/end.2010.0306. [43] A. K. Morimoto et al., “Force sensor for laparoscopic Babcock,” Stud. Health Technol. Inform., vol. 39, pp. 354–361, 1997. [44] I. Brouwer, J. Ustin, L. Bentley, A. Sherman, N. Dhruv, and F. Tendick, “Measuring in vivo animal soft tissue properties for haptic modeling in surgical simulation,” Stud. Health Technol. Inform., vol. 81, pp. 69–74, 2001. [45] S. Greenish, V. Hayward, V. Chial, A. Okamura, and T. Steffen, “Measurement, Analysis, and Display of Haptic Signals During Surgical Cutting,” Presence Teleoper Virtual Env., vol. 11, no. 6, pp. 626–651, Dec. 2002, doi: 10.1162/105474602321050749. [46] S. P. Rodrigues, T. Horeman, J. Dankelman, J. J. van den Dobbelsteen, and F.- W. Jansen, “Suturing intraabdominal organs: when do we cause tissue damage?,” Surg. Endosc., vol. 26, no. 4, pp. 1005–1009, Apr. 2012, doi: 10.1007/s00464- 011-1986-5. [47] J. J. van den Dobbelsteen, A. Schooleman, and J. Dankelman, “Friction dynamics of trocars,” Surg. Endosc., vol. 21, no. 8, pp. 1338–1343, Aug. 2007, doi: 10.1007/s00464-006-9105-8. [48] P. Puangmali, K. Althoefer, L. D. Seneviratne, D. Murphy, and P. Dasgupta, “State-of-the-Art in Force and Tactile Sensing for Minimally Invasive Surgery,” IEEE Sens. J., vol. 8, no. 4, pp. 371–381, Apr. 2008, doi: 10.1109/JSEN.2008.917481. [49] D. Mantovani, “Shape memory alloys: Properties and biomedical applications,” JOM, vol. 52, no. 10, pp. 36–44, Oct. 2000, doi: 10.1007/s11837-000-0082-4. [50] “Memry, a SAES Group Company | From Melt to Market.” http://memry.com/ (accessed May 28, 2017). 198 [51] J. J. B. Lim and A. G. Erdman, “A review of mechanism used in laparoscopic surgical instruments,” Mech. Mach. Theory, vol. 38, no. 11, pp. 1133–1147, Nov. 2003, doi: 10.1016/S0094-114X(03)00063-6. [52] C. Song, “History and Current Situation of Shape Memory Alloys Devices for Minimally Invasive Surgery,” Open Med. Devices J., vol. 2, no. 1, Jan. 2010, Accessed: May 28, 2017. [Online]. Available: https://benthamopen.com/ABSTRACT/TOMDJ-2-24 [53] S. J. Phee et al., “Robot-assisted endoscopic submucosal dissection is effective in treating patients with early-stage gastric neoplasia,” Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc., vol. 10, no. 10, pp. 1117– 1121, Oct. 2012, doi: 10.1016/j.cgh.2012.05.019. [54] S. Akbari and H. R. Shea, “An array of 100 μm × 100 μm dielectric elastomer actuators with 80% strain for tissue engineering applications,” Sens. Actuators Phys., vol. 186, pp. 236–241, Oct. 2012, doi: 10.1016/j.sna.2012.01.030. [55] R. Pelrine, R. Kornbluh, Q. Pei, and J. Joseph, “High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%,” Science, vol. 287, no. 5454, pp. 836–839, Feb. 2000, doi: 10.1126/science.287.5454.836. [56] P. Garstecki, P. Tierno, D. B. Weibel, F. Sagués, and G. M. Whitesides, “Propulsion of flexible polymer structures in a rotating magnetic field,” J. Phys. Condens. Matter, vol. 21, no. 20, p. 204110, 2009, doi: 10.1088/0953- 8984/21/20/204110. [57] J. Paek, I. Cho, and J. Kim, “Microrobotic tentacles with spiral bending capability based on shape-engineered elastomeric microtubes,” Sci. Rep., vol. 5, Jun. 2015, doi: 10.1038/srep10768. [58] A. AbuZaiter and M. S. M. Ali, “Analysis of Thermomechanical Behavior of Shape-Memory-Alloy Bimorph Microactuator,” in Modelling and Simulation 2014 5th International Conference on Intelligent Systems, Jan. 2014, pp. 390– 393. doi: 10.1109/ISMS.2014.72. [59] A. D. Donno, L. Zorn, P. Zanne, F. Nageotte, and M. de Mathelin, “Introducing STRAS: A new flexible robotic system for minimally invasive surgery,” in 2013 IEEE International Conference on Robotics and Automation, May 2013, pp. 1213–1220. doi: 10.1109/ICRA.2013.6630726. 199 [60] P. Berkelman and J. Ma, “A Compact Modular Teleoperated Robotic System for Laparoscopic Surgery,” Int. J. Robot. Res., vol. 28, no. 9, pp. 1198–1215, Sep. 2009, doi: 10.1177/0278364909104276. [61] J. H. Crews and G. D. Buckner, “Design optimization of a shape memory alloy– actuated robotic catheter,” J. Intell. Mater. Syst. Struct., vol. 23, no. 5, pp. 545– 562, Mar. 2012, doi: 10.1177/1045389X12436738. [62] T. G. Frank, W. Xu, and A. Cuschieri, “Instruments based on shape-memory alloy properties for minimal access surgery, interventional radiology and flexible endoscopy,” Minim. Invasive Ther. Allied Technol., vol. 9, no. 2, pp. 89–98, Jan. 2000, doi: 10.3109/13645700009063055. [63] L. Petrini and F. Migliavacca, “Biomedical Applications of Shape Memory Alloys,” J. Metall., vol. 2011, p. e501483, May 2011, doi: 10.1155/2011/501483. [64] T. Bradly, W. Brantley, and B. Culbertson, “Differential scanning calorimetry (DSC) analyses of superelastic and nonsuperelastic nickel-titanium orthodontic wires.,” Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod., vol. 109, no. 6, pp. 589–97, Jun. 1996. [65] J. A. Shaw, C. B. Churchill, and M. A. Iadicola, “Tips and Tricks for Characterizing Shape Memory Alloy Wire: Part 1—Differential Scanning Calorimetry and Basic Phenomena,” Exp. Tech., vol. 32, no. 5, pp. 55–62, 2008, doi: 10.1111/j.1747-1567.2008.00410.x. [66] M. F.-X. Wagner, S. R. Dey, H. Gugel, J. Frenzel, Ch. Somsen, and G. Eggeler, “Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling,” Intermetallics, vol. 18, no. 6, pp. 1172–1179, Jun. 2010, doi: 10.1016/j.intermet.2010.02.048. [67] T. Duerig, “The metallurgy of Nitinol as it pertains to medical devices - ScienceDirect,” in Titanium in Medical and Dental Applications, Woodhead Publishing, 2018, pp. 555–570. Accessed: Feb. 17, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780128124567000251 [68] R. J. Wasilewski, S. R. Butler, J. E. Hanlon, and D. Worden, “Homogeneity range and the martensitic transformation in TiNi,” Metall. Mater. Trans., vol. 2, no. 1, pp. 229–238, Dec. 1971. 200 [69] M. R. da Silva et al., “Microstructural Characterization of a Laser Surface Remelted Cu-Based Shape Memory Alloy,” Mater. Res., vol. 21, no. 3, 2018, doi: 10.1590/1980-5373-mr-2017-1044. [70] Y. Zheng, F. Jiang, L. J. Li, X. Yang, and Y. Liu, “Effect of ageing treatment on the transformation behaviour of Ti50.9 at.% Ni alloy,” 2008. doi: 10.1016/j.actamat.2007.10.020. [71] W. Huang, “On the selection of shape memory alloys for actuators,” Mater. Des., vol. 23, no. 1, pp. 11–19, Feb. 2002, doi: 10.1016/S0261-3069(01)00039-5. [72] “Printiciple, Types and Structure of Strain Gage | KYOWA.” https://www.kyowa-ei.com/eng/technical/strain_gages/principles.html (accessed May 28, 2020). [73] E. rite, “Strain Gauge: Principle, Types, Features and Applications,” Medium, Jul. 04, 2019. https://medium.com/@encardio/strain-gauge-principle-types- features-and-applications-357f6fed86a5 (accessed May 28, 2020). [74] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE Trans. Control Syst. Technol., vol. 13, no. 4, pp. 559–576, Jul. 2005, doi: 10.1109/TCST.2005.847331. [75] A. Spaggiari, I. Spinella, and E. Dragoni, “Design equations for binary shape memory actuators under arbitrary external forces,” J. Intell. Mater. Syst. Struct., vol. 24, no. 6, pp. 682–694, Apr. 2013, doi: 10.1177/1045389X12444491. [76] “SimMechanics 2 User’s Guide.” MathWorks, Inc., 2007.