88 REFERENCES [1] A. González, E. Goikolea, J. A. Barrena, and R. Mysyk, “Review on supercapacitors: Technologies and materials,” Renew. Sustain. Energy Rev., vol. 58, pp. 1189–1206, 2016, doi: 10.1016/j.rser.2015.12.249. [2] J. Conder, K. Fic, and T. Electrochemistry, Supercapacitors (electrochemical capacitors) 10. 2019. [3] L. Chen et al., “Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors,” ACS Nano, vol. 61, no. 3, pp. 201–2012, 2012, doi: 10.1021/nn302147s. [4] W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, and J. Liu, “Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects,” Adv. Sci., vol. 4, no. 7, pp. 1–21, 2017, doi: 10.1002/advs.201600539. [5] P. Sharma and T. S. Bhatti, “A review on electrochemical double-layer capacitors,” Energy Convers. Manag., vol. 51, no. 12, pp. 2901–2912, 2010, doi: 10.1016/j.enconman.2010.06.031. [6] C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogotsi, and P. Simon, “Relation between the ion size and pore size for an electric double-layer capacitor,” J. Am. Chem. Soc., vol. 130, no. 9, pp. 2730–2731, 2008, doi: 10.1021/ja7106178. [7] R. Härmas et al., “Influence of porosity parameters and electrolyte chemical composition on the power densities of non-aqueous and ionic liquid based supercapacitors,” Electrochim. Acta, vol. 283, pp. 931–948, 2018, doi: 10.1016/j.electacta.2018.06.115. [8] K. Urita, C. Urita, K. Fujita, K. Horio, M. Yoshida, and I. Moriguchi, “The ideal porous structure of EDLC carbon electrodes with extremely high capacitance,” Nanoscale, vol. 9, no. 40, pp. 15643–15649, 2017, doi: 10.1039/c7nr05307j. [9] Y. Ji, T. Li, L. Zhu, X. Wang, and Q. Lin, “Preparation of activated carbons by microwave heating KOH activation,” vol. 254, pp. 506–512, 2007, doi: 89 10.1016/j.apsusc.2007.06.034. [10] L. Khezami, A. Ould-Dris, and R. Capart, “Activated carbon from thermo- compressed wood and other lignocellulosic precursors,” BioResources, vol. 2, no. 2, pp. 193–209, 2007, doi: 10.15376/biores.2.2.193-209. [11] N. K. N. Quach, W. D. Yang, Z. J. Chung, and H. L. Tran, “The Influence of the Activation Temperature on the Structural Properties of the Activated Carbon Xerogels and Their Electrochemical Performance,” Adv. Mater. Sci. Eng., vol. 2017, 2017, doi: 10.1155/2017/8308612. [12] Z. Y. Li, M. S. Akhtar, D. H. Kwak, and O. B. Yang, “Improvement in the surface properties of activated carbon via steam pretreatment for high performance supercapacitors,” Appl. Surf. Sci., vol. 404, pp. 88–93, 2017, doi: 10.1016/j.apsusc.2017.01.238. [13] Q. Lu, Y.-Y. Xu, S.-J. Mu, and W.-C. Li, “The effect of nitrogen and/or boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes,” Carbon N. Y., vol. 130, no. 2018, p. 844, 2018, doi: 10.1016/j.carbon.2017.10.057. [14] T. Kim, G. Jung, S. Yoo, K. S. Suh, and R. S. Ruoff, “Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores,” ACS Nano, vol. 7, no. 8, pp. 6899–6905, 2013, doi: 10.1021/nn402077v. [15] J. Conder, K. Fic, and C. Matei Ghimbeu, Supercapacitors (electrochemical capacitors). 2019. [16] E. E. Miller, Y. Hua, and F. H. Tezel, “Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors,” J. Energy Storage, vol. 20, no. August, pp. 30–40, 2018, doi: 10.1016/j.est.2018.08.009. [17] V. V. N. Obreja, “Supercapacitors specialities - Materials review,” AIP Conf. Proc., vol. 1597, no. February, pp. 98–120, 2014, doi: 10.1063/1.4878482. [18] J. M. Chem, “PAPER A comprehensive study on KOH activation of ordered 90 mesoporous carbons and their supercapacitor application †,” pp. 93–99, 2012, doi: 10.1039/c1jm12742j. [19] M. A. Raza, A. Westwood, A. Brown, N. Hondow, and C. Stirling, “Graphite nanoplatelets produced by oxidation and thermal exfoliation of graphite and electrical conductivities of their epoxy composites,” J. Nanosci. Nanotechnol., vol. 12, no. 12, pp. 9259–9270, 2012, doi: 10.1166/jnn.2012.6778. [20] N. W. B. Balasooriya and P. Touzain, “Capacity improvement of mechanically and chemically treated Sri Lanka natural graphite as an anode material in Li-ion batteries,” pp. 305–309, 2007, doi: 10.1007/s11581-007-0114-y. [21] N. W. B. Balasooriya, H. P. T. S. Hewathilake, R. M. U. M. Somarathna, H. W. M. A. C. Wijayasinghe, L. P. S. Rohitha, and H. M. T. G. A. Pitawala, “Physical and Chemical Purification of Sri Lankan Flake Graphite and Vein Graphite,” 5th Int. Symp. 2015 – IntSym, SEUSL Phys., no. January, pp. 163–166, 2015, [22] L. Z. Fan, S. Qiao, W. Song, M. Wu, X. He, and X. Qu, “Effects of the functional groups on the electrochemical properties of ordered porous carbon for supercapacitors,” Electrochim. Acta, vol. 105, pp. 299–304, 2013, doi: 10.1016/j.electacta.2013.04.137. [23] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, “Graphene-based supercapacitor with an ultrahigh energy density,” Nano Lett., vol. 10, no. 12, pp. 4863–4868, 2010, doi: 10.1021/nl102661q. [24] Y. He et al., “Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors,” Electrochim. Acta, vol. 282, pp. 618–625, 2018, doi: 10.1016/j.electacta.2018.06.103. [25] R. Lin, P. L. Taberna, J. Chmiola, D. Guay, Y. Gogotsi, and P. Simon, “Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double- Layer Capacitors,” J. Electrochem. Soc., vol. 156, no. 1, p. A7, 2009, doi: 10.1149/1.3002376. [26] Y. H. Hu, H. Wang, and B. Hu, “Thinnest two-dimensional nanomaterial- 91 graphene for solar energy,” ChemSusChem, vol. 3, no. 7, pp. 782–796, 2010, doi: 10.1002/cssc.201000061. [27] L. Hu et al., “Direct anodic exfoliation of graphite onto high-density aligned graphene for large capacity supercapacitors,” Nano Energy, vol. 34, no. January, pp. 515–523, 2017, doi: 10.1016/j.nanoen.2017.03.007. [28] E. Kusrini, A. Suhrowati, A. Usman, M. Khalil, and V. Degirmenci, “Synthesis and characterization of graphite oxide, graphene oxide, and reduced graphene oxide from graphite waste using modified hummers’ method and zinc as reducing agent,” Int. J. Technol., vol. 10, no. 6, pp. 1093–1104, 2019, doi: 10.14716/ijtech.v10i6.3639. [29] Z. Jiang, Z. Jiang, and W. Chen, “The role of holes in improving the performance of nitrogen-doped holey graphene as an active electrode material for supercapacitor and oxygen reduction reaction,” J. Power Sources, vol. 251, pp. 55–65, 2014, doi: 10.1016/j.jpowsour.2013.11.031. [30] D. Zhu et al., “Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline-co-p-phenylenediamine) for supercapacitors,” Electrochim. Acta, vol. 224, pp. 17–24, 2017, doi: 10.1016/j.electacta.2016.12.023. [31] J. N. Ramavath, M. Raja, S. Kumar, and R. Kothandaraman, “Mild acidic mixed electrolyte for high-performance electrical double layer capacitor,” Appl. Surf. Sci., vol. 489, pp. 867–874, 2019, doi: 10.1016/j.apsusc.2019.05.343. [32] Y. Lv, F. Zhang, Y. Zhai, and J. Wang, “PAPER A comprehensive study on KOH activation of ordered mesoporous carbons,” no. September, 2011, doi: 10.1039/C1JM12742J. [33] M. A. Lillo-Ródenas, D. Cazorla-Amorós, and A. Linares-Solano, “Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism,” Carbon N. Y., vol. 41, no. 2, pp. 267–275, 2003, doi: 10.1016/S0008-6223(02)00279-8. [34] H. C. Youn et al., “High-surface-area nitrogen-doped reduced graphene oxide 92 for electric double-layer capacitors,” ChemSusChem, vol. 8, no. 11, pp. 1875– 1884, 2015, doi: 10.1002/cssc.201500122. [35] K. Gopalsamy, J. Balamurugan, T. D. Thanh, N. H. Kim, and J. H. Lee, “Fabrication of nitrogen and sulfur co-doped graphene nanoribbons with porous architecture for high-performance supercapacitors,” Chem. Eng. J., vol. 312, pp. 180–190, 2017, doi: 10.1016/j.cej.2016.11.130. [36] S. Zhang and N. Pan, “Supercapacitors performance evaluation,” Adv. Energy Mater., vol. 5, no. 6, pp. 1–19, 2015, doi: 10.1002/aenm.201401401. [37] Y. Shao et al., “Design and Mechanisms of Asymmetric Supercapacitors,” Chem. Rev., vol. 118, no. 18, pp. 9233–9280, 2018, doi: 10.1021/acs.chemrev.8b00252. [38] Y. Wang, Y. Song, and Y. Xia, “Electrochemical capacitors: Mechanism, materials, systems, characterization and applications,” Chem. Soc. Rev., vol. 45, no. 21, pp. 5925–5950, 2016, doi: 10.1039/c5cs00580a. [39] J. Libich, J. Máca, J. Vondrák, O. Čech, and M. Sedlaříková, “Supercapacitors: Properties and applications,” J. Energy Storage, vol. 17, no. March, pp. 224– 227, 2018, doi: 10.1016/j.est.2018.03.012. [40] R. German, P. Venet, A. Sari, O. Briat, and J. M. Vinassa, “Electrochemical Double Layer Capacitors (supercapacitors) ageing impacts and comparison on different impedance models,” EPE J. (European Power Electron. Drives Journal), vol. 24, no. 3, pp. 6–13, 2014, doi: 10.1080/09398368.2014.11742747. [41] X. Chen, R. Paul, and L. Dai, “Carbon-based supercapacitors for efficient energy storage,” Natl. Sci. Rev., vol. 4, no. 3, pp. 453–489, 2017, doi: 10.1093/nsr/nwx009. [42] J.-H. Lee, S. Park, and J.-W. Choi, “Electrical Property of Graphene and Its Application to Electrochemical Biosensing,” Nanomaterials, vol. 9, no. 2, p. 297, 2019, doi: 10.3390/nano9020297. [43] G. Leofanti, M. Padovan, G. Tozzola, and B. Venturelli, “Surface area and pore 93 texture of catalysts,” Catal. Today, vol. 41, no. 1–3, pp. 207–219, 1998, doi: 10.1016/S0920-5861(98)00050-9. [44] Y. Wen, G. Cao, J. Cheng, and Y. Yang, “Correlation of capacitance with the pore structure for nanoporous glassy carbon electrodes,” J. Electrochem. Soc., vol. 152, no. 9, pp. 1770–1775, 2005, doi: 10.1149/1.1984447. [45] S. M. Lamine, C. Ridha, H. M. Mahfoud, C. Mouad, B. Lotfi, and A. H. Al- Dujaili, “Chemical activation of an activated carbon prepared from coffee residue,” Energy Procedia, vol. 50, pp. 393–400, 2014, doi: 10.1016/j.egypro.2014.06.047. [46] C. Portet, Z. Yang, Y. Korenblit, Y. Gogotsi, R. Mokaya, and G. Yushin, “Electrical double-layer capacitance of zeolite-templated carbon in organic electrolyte,” J. Electrochem. Soc., vol. 156, no. 1, pp. 1–6, 2009, doi: 10.1149/1.3002375. [47] J. S. Moon, H. Kim, D. C. Lee, J. T. Lee, and G. Yushin, “Increasing capacitance of zeolite-templated carbons in electric double layer capacitors,” J. Electrochem. Soc., vol. 162, no. 5, pp. A5070–A5076, 2015, doi: 10.1149/2.0131505jes. [48] Z. He et al., “The effect of activation methods on the electrochemical performance of ordered mesoporous carbon for supercapacitor applications,” J. Mater. Sci., vol. 52, no. 5, pp. 2422–2434, 2017, doi: 10.1007/s10853-016- 0536-x. [49] I. Yang, S. G. Kim, S. H. Kwon, M. S. Kim, and J. C. Jung, “Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes,” Electrochim. Acta, vol. 223, pp. 21– 30, 2017, doi: 10.1016/j.electacta.2016.11.177. [50] L. J. Wang et al., “Flash Converted Graphene for Ultra-High Power Supercapacitors,” Adv. Energy Mater., vol. 5, no. 18, pp. 1–8, 2015, doi: 10.1002/aenm.201500786. [51] S. Kerisit, B. Schwenzer, and M. Vijayakumar, “Effects of oxygen-containing 94 functional groups on supercapacitor performance,” J. Phys. Chem. Lett., vol. 5, no. 13, pp. 2330–2334, 2014, doi: 10.1021/jz500900t. [52] L. Sun et al., “Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage,” RSC Adv., vol. 2, no. 10, pp. 4498–4506, 2012, doi: 10.1039/c2ra01367c. [53] K. Pinkert et al., “Role of surface functional groups in ordered mesoporous carbide-derived carbon/ionic liquid electrolyte double-layer capacitor interfaces,” ACS Appl. Mater. Interfaces, vol. 6, no. 4, pp. 2922–2928, 2014, doi: 10.1021/am4055029. [54] M. P. Kumar, T. Kesavan, G. Kalita, P. Ragupathy, T. N. Narayanan, and D. K. Pattanayak, “On the large capacitance of nitrogen doped graphene derived by a facile route,” RSC Adv., vol. 4, no. 73, pp. 38689–38697, 2014, doi: 10.1039/c4ra04927f. [55] A. K. Geim, “Random walk to graphene (Nobel lecture),” Angew. Chemie - Int. Ed., vol. 50, no. 31, pp. 6966–6985, 2011, doi: 10.1002/anie.201101174. [56] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science (80-. )., vol. 321, no. 5887, pp. 385–388, 2008, doi: 10.1126/science.1157996. [57] Y. Zhu et al., “Graphene and graphene oxide: Synthesis, properties, and applications,” Adv. Mater., vol. 22, no. 35, pp. 3906–3924, 2010, doi: 10.1002/adma.201001068. [58] Y. Lin, Y. Liao, Z. Chen, and J. W. Connell, “Holey graphene: a unique structural derivative of graphene,” Mater. Res. Lett., vol. 5, no. 4, pp. 209–234, 2017, doi: 10.1080/21663831.2016.1271047. [59] F. Barzegar, A. Bello, J. K. Dangbegnon, N. Manyala, and X. Xia, “Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability,” Appl. Energy, vol. 207, pp. 417–426, 2017, doi: 10.1016/j.apenergy.2017.05.110. 95 [60] K. O. Oyedotun, T. M. Masikhwa, S. Lindberg, A. Matic, P. Johansson, and N. Manyala, “Comparison of ionic liquid electrolyte to aqueous electrolytes on carbon nanofibres supercapacitor electrode derived from oxygen-functionalized graphene,” Chem. Eng. J., vol. 375, p. 121906, 2019, doi: 10.1016/j.cej.2019.121906. [61] G. H. Films et al., “Flexible Solid-State Supercapacitors Based on Three- Dimensional,” no. 5, pp. 4042–4049, 2013. [62] S. Mundinamani, “The choice of noble electrolyte for symmetric polyurethane- graphene composite supercapacitors,” Int. J. Hydrogen Energy, vol. 44, no. 21, pp. 11240–11246, 2019, doi: 10.1016/j.ijhydene.2019.02.164. [63] S. Ye, J. Feng, and P. Wu, “Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode,” ACS Appl. Mater. Interfaces, vol. 5, no. 15, pp. 7122–7129, 2013, doi: 10.1021/am401458x. [64] B. Zheng, T. Chen, and F. Xiao, “KOH-activated nitrogen-doped graphene by means of thermal annealing for supercapacitor,” pp. 1809–1814, 2013, doi: 10.1007/s10008-013-2101-8. [65] K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz, and J. Machnikowski, “Electrochemical capacitors based on highly porous carbons prepared by KOH activation,” vol. 49, pp. 515–523, 2004, doi: 10.1016/j.electacta.2003.08.026. [66] S. Wu, G. Chen, N. Y. Kim, K. Ni, W. Zeng, and Y. Zhao, “Creating Pores on Graphene Platelets by Low-Temperature KOH Activation for Enhanced Electrochemical Performance,” no. 17, pp. 2376–2384, 2016, doi: 10.1002/smll.201503855. [67] M. Horn, B. Gupta, J. MacLeod, J. Liu, and N. Motta, “Graphene-based supercapacitor electrodes: Addressing challenges in mechanisms and materials,” Curr. Opin. Green Sustain. Chem., vol. 17, pp. 42–48, 2019, doi: 10.1016/j.cogsc.2019.03.004. [68] M. M. et al . Bhuyan, M.S.A, Uddin, M.n., Islam, “Synthesis of graphene,” Int. Nano Lett., vol. 6, no. 2, pp. 65–83, 2016, doi: 10.1007/s40089-015-0176-1. 96 [69] W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc., vol. 80, no. 6, p. 1339, 1958, doi: 10.1021/ja01539a017. [70] Y. Hernandez et al., “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nat. Nanotechnol., vol. 3, no. 9, pp. 563–568, 2008, doi: 10.1038/nnano.2008.215. [71] T. E. Thompson, “Graphite intercalation compounds,” Phys. Today, vol. 31, no. 7, pp. 36–45, 1978, doi: 10.1063/1.2995104. [72] A. A. F. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, “Electric Field Effect in Atomically Thin Carbon Films,” vol. 666, no. 2004, pp. 666–669, 2013, doi: 10.1126/science.1102896. [73] V. Sharma, A. Garg, and S. Chander Sood, “Graphene Synthesis via Exfoliation of Graphite by Ultrasonication,” Int. J. Eng. Trends Technol., vol. 26, no. 1, pp. 37–42, 2015, doi: 10.14445/22315381/ijett-v26p208. [74] C. N. R. Rao, U. Maitra, and H. S. S. R. Matte, “Synthesis, Characterization, and Selected Properties of Graphene,” Graphene Synth. Prop. Phenom., pp. 1– 47, 2012, doi: 10.1002/9783527651122.ch1. [75] H. Hashimoto, Y. Muramatsu, Y. Nishina, and H. Asoh, “Bipolar anodic electrochemical exfoliation of graphite powders,” Electrochem. commun., vol. 104, no. June, p. 106475, 2019, doi: 10.1016/j.elecom.2019.06.001. [76] M. S. A. Bhuyan, M. N. Uddin, M. M. Islam, F. A. Bipasha, and S. S. Hossain, “Synthesis of graphene,” Int. Nano Lett., vol. 6, no. 2, pp. 65–83, 2016, doi: 10.1007/s40089-015-0176-1. [77] M. Zhou, F. Pu, Z. Wang, and S. Guan, “Nitrogen-doped porous carbons through KOH activation with superior performance in supercapacitors,” Carbon N. Y., vol. 68, pp. 185–194, 2013, doi: 10.1016/j.carbon.2013.10.079. [78] J. Feng and Z. Guo, “Wettability of graphene: From influencing factors and reversible conversions to potential applications,” Nanoscale Horizons, vol. 4, no. 2, pp. 526–530, 2019, doi: 10.1039/c8nh00348c. 97 [79] O. Akhavan, E. Ghaderi, E. Abouei, S. Hatamie, and E. Ghasemi, Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets, vol. 66. Elsevier Ltd, 2014. [80] N. Díez, A. ͆liwak, S. Gryglewicz, B. Grzyb, and G. Gryglewicz, “Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment,” RSC Adv., vol. 5, no. 100, pp. 81831–81837, 2015, doi: 10.1039/c5ra14461b. [81] M. Wei et al., “Engineering reduced graphene oxides with enhanced electrochemical properties through multiple-step reductions,” Electrochim. Acta, vol. 258, pp. 735–743, 2017, doi: 10.1016/j.electacta.2017.11.120. [82] Z. Wei et al., “Nanoscale tunable reduction of graphene oxide for graphene electronics,” Science (80-. )., vol. 328, no. 5984, pp. 1373–1376, 2010, doi: 10.1126/science.1188119. [83] R. S. Cherian, S. Sandeman, S. Ray, I. N. Savina, J. Ashtami, and P. V. Mohanan, “Green synthesis of Pluronic stabilized reduced graphene oxide: Chemical and biological characterization,” Colloids Surfaces B Biointerfaces, vol. 179, pp. 94–106, 2019, doi: 10.1016/j.colsurfb.2019.03.043. [84] W. Gao, “The chemistry of graphene oxide,” Graphene Oxide Reduct. Recipes, Spectrosc. Appl., pp. 61–95, 2015, doi: 10.1007/978-3-319-15500-5_3. [85] H. Wang, Q. Fu, and C. Pan, “Green mass synthesis of graphene oxide and its MnO 2 composite for high performance supercapacitor,” Electrochim. Acta, vol. 312, pp. 11–21, 2019, doi: 10.1016/j.electacta.2019.04.178. [86] M. Ghorbani, H. Abdizadeh, and M. R. Golobostanfard, “Reduction of Graphene Oxide via Modified Hydrothermal Method,” Procedia Mater. Sci., vol. 11, no. 2009, pp. 326–330, 2015, doi: 10.1016/j.mspro.2015.11.104. [87] J. M. Calo, “Carbon activation with KOH as explored by temperature programmed techniques , and the effects of hydrogen,” vol. 45, pp. 2529–2536, 2007, doi: 10.1016/j.carbon.2007.08.021. [88] J. Díaz-Terán, D. M. Nevskaia, J. L. G. Fierro, A. J. López-Peinado, and A. 98 Jerez, “Study of chemical activation process of a lignocellulosic material with KOH by XPS and XRD,” Microporous Mesoporous Mater., vol. 60, no. 1–3, pp. 173–181, 2003, doi: 10.1016/S1387-1811(03)00338-X. [89] M. Kunowsky, B. Weinberger, and F. L. Darkrim, “Impact of the carbonisation temperature on the activation of carbon fibres and their application for hydrogen storage.” [90] B. Khalid, Q. Meng, R. Akram, and B. Cao, “Effects of KOH activation on surface area , porosity and desalination performance of coconut carbon electrodes,” vol. 3994, no. January, 2016, doi: 10.1080/19443994.2014.979448. [91] M. Li, W. Li, and S. Liu, “Hydrothermal synthesis , characterization , and KOH activation of carbon spheres from glucose,” Carbohydr. Res., vol. 346, no. 8, pp. 999–1004, 2011, doi: 10.1016/j.carres.2011.03.020. [92] X. Gao, C. Zhan, X. Yu, Q. Liang, R. Lv, and G. Gai, “A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore,” 2017, doi: 10.3390/ma10040414. [93] C. Lenser and N. H. Menzler, “Impedance characterization of supported oxygen ion conducting electrolytes,” Solid State Ionics, vol. 334, no. January, pp. 70– 81, 2019, doi: 10.1016/j.ssi.2019.01.031. [94] L. Yu and G. Z. Chen, “Ionic Liquid-Based Electrolytes for Supercapacitor and Supercapattery,” Front. Chem., vol. 7, 2019, doi: 10.3389/fchem.2019.00272. [95] S. K. Tiwari, J. Mishra, G. Hatui, and G. C. Nayak, “Conducting Polymer Hybrids,” pp. 117–142, 2017, doi: 10.1007/978-3-319-46458-9. [96] J. Zhang, C. Zhong, Y. Deng, W. Hu, J. Qiao, and L. Zhang, “A review of electrolyte materials and compositions for electrochemical supercapacitors,” Chem. Soc. Rev., vol. 44, no. 21, pp. 7484–7539, 2015, doi: 10.1039/c5cs00303b. [97] S. Vivekchand and C. Rout, “Graphene-based electrochemical supercapacitors,” J. Chem. …, vol. 120, no. 1, pp. 9–13, 2008. 99 [98] A. Raghunandanan, M. Yeddala, P. Padikassu, and R. Pitchai, “Partially Exfoliated Graphite Paper as Free-Standing Electrode for Supercapacitors,” ChemistrySelect, vol. 3, no. 18, pp. 5032–5039, 2018, doi: 10.1002/slct.201800370. [99] Z. Zhao, X. Wang, M. Yao, L. Liu, Z. Niu, and J. Chen, “Activated carbon felts with exfoliated graphene nanosheets for flexible all-solid-state supercapacitors,” Chinese Chem. Lett., vol. 30, no. 4, pp. 915–918, 2019, doi: 10.1016/j.cclet.2019.03.003. [100] M. Ghaffari et al., “High-Volumetric Performance Aligned Nano- Porous Microwave Exfoliated Graphite Oxide-based Electrochemical Capacitors,” pp. 4879–4885, 2013, doi: 10.1002/adma.201301243. [101] M. Hamedi, J. Wigenius, F. Tai, P. Björk, and D. Aili, “Linköping University Post Print Polypeptide-guided assembly of conducting polymer nanocomposites Polypeptide-Guided Assembly of Conducting Polymer Nanocomposites,” no. 2, pp. 2058–2061, 2010, doi: 10.1039/b000000x. [102] H. Y. Li, Y. Yu, L. Liu, L. Liu, and Y. Wu, “One-step electrochemically expanded graphite foil for flexible all-solid supercapacitor with high rate performance,” Electrochim. Acta, vol. 228, pp. 553–561, 2017, doi: 10.1016/j.electacta.2017.01.063. [103] M. Kyung et al., “Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis,” J. Power Sources, vol. 347, pp. 283–290, 2017, doi: 10.1016/j.jpowsour.2017.02.058. [104] Y. He et al., “Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors,” Electrochim. Acta, vol. 282, no. 5, pp. 618–625, 2018, doi: 10.1016/j.electacta.2018.06.103. [105] A. Bakandritsos, P. Jakubec, M. Pykal, and M. Otyepka, “Covalently functionalized graphene as a supercapacitor electrode material,” FlatChem, vol. 13, no. December, pp. 25–33, 2019, doi: 10.1016/j.flatc.2018.12.004. [106] L. Guan, L. Yu, and G. Z. Chen, “Capacitive and non-capacitive faradaic charge 100 storage,” Electrochim. Acta, vol. 206, pp. 464–478, 2016, doi: 10.1016/j.electacta.2016.01.213. [107] M. J. Bleda-Martínez, J. A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, and A. Linares-Solano, “Role of surface chemistry on electric double layer capacitance of carbon materials,” Carbon N. Y., vol. 43, no. 13, pp. 2677–2684, 2005, doi: 10.1016/j.carbon.2005.05.027. [108] Y. Wang et al., “Supercapacitor devices based on graphene materials,” J. Phys. Chem. C, vol. 113, no. 30, pp. 13103–13107, 2009, doi: 10.1021/jp902214f. [109] F. Barzegar, A. Bello, D. Momodu, M. J. Madito, J. Dangbegnon, and N. Manyala, “Preparation and characterization of porous carbon from expanded graphite for high energy density supercapacitor in aqueous electrolyte,” J. Power Sources, vol. 309, pp. 245–253, 2016, doi: 10.1016/j.jpowsour.2016.01.097. [110] N. C. Karunarathne and A. C. Wijayasinghe, “Amelioration of Sri Lankan Vein Graphite As an Advance Electrode Material for the Anode Application in Li- Ion Rechargeable Batteries Electrode Material for the Anode Application in Li- Ion,” no. December, pp. 159–162, 2015. [111] H. P. T. Sasanka Hewathilake, N. Karunarathne, A. Wijayasinghe, N. W. B. Balasooriya, and A. K. Arof, “Performance of developed natural vein graphite as the anode material of rechargeable lithium ion batteries,” Ionics (Kiel)., vol. 23, no. 6, pp. 1417–1422, 2017, doi: 10.1007/s11581-016-1953-1. [112] T. H. N. G. Amaraweera, N. W. B. Balasooriya, and H. W. M. A. C. Wijayasinghe, “Purity Enhancement of Sri Lankan Vein Graphite for Lithium - ion Rechargeable Battery Anode,” 29th Tech. Sess. Geol. Soc. Sri Lanka, vol. 2013, pp. 101–104, 2013. [113] S. Lanka, S. Lanka, S. Lanka, S. Lanka, and S. Lanka, “Physical and Chemical Purification of Sri Lankan Flake,” vol. 2017, no. January 2015, pp. 163–166, 2015. [114] N. G. Amaraweera and A. C. Wijayasinghe, “Study of Thermal Behavior of 101 Vein Graphite for Advance Study of Thermal Behavior of Vein Graphite for Advance Technological Applications,” no. April, 2017. [115] T. H. N. G. Amaraweera, N. W. B. Balasooriya, H. W. M. A. C. Wijayasinghe, A. N. B. Attanayake, B. E. Mellander, and M. A. K. L. Dissanayake, “Surface modification of natural vein graphite for the anode application in Li-ion rechargeable batteries,” Ionics (Kiel)., vol. 24, no. 11, pp. 3423–3429, 2018, doi: 10.1007/s11581-018-2523-5. [116] C. B. Dissanayake, R. P. Gunawardena, and D. M. S. K. Dinalankara, “Trace elements in vein graphite of Sri Lanka,” Chem. Geol., vol. 68, no. 1–2, pp. 121– 128, 1988, doi: 10.1016/0009-2541(88)90091-5. [117] N. W. B. Balasooriya, P. Touzain, and P. W. S. K. Bandaranayake, “Lithium electrochemical intercalation into mechanically and chemically treated Sri Lanka natural graphite,” J. Phys. Chem. Solids, vol. 67, no. 5–6, pp. 1213–1217, 2006, doi: 10.1016/j.jpcs.2006.01.051. [118] W. Zhang et al., “Fast and considerable adsorption of methylene blue dye onto graphene oxide,” Bull. Environ. Contam. Toxicol., vol. 87, no. 1, pp. 86–90, 2011, doi: 10.1007/s00128-011-0304-1. [119] P. Montes-Navajas, N. G. Asenjo, R. Santamaría, R. Menéndez, A. Corma, and H. García, “Surface area measurement of graphene oxide in aqueous solutions,” Langmuir, vol. 29, no. 44, pp. 13443–13448, 2013, doi: 10.1021/la4029904. [120] C. A. Nunes and M. C. Guerreiro, “Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers,” Quim. Nova, vol. 34, no. 3, pp. 472–476, 2011, doi: 10.1590/S0100-40422011000300020. [121] S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J. J. Ehrhardt, and S. Gaspard, “Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation,” J. Hazard. Mater., vol. 165, no. 1–3, pp. 1029–1039, 2009, doi: 10.1016/j.jhazmat.2008.10.133. [122] G. Annadurai, L. Y. Ling, and J. F. Lee, “Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis,” 102 J. Hazard. Mater., vol. 152, no. 1, pp. 337–346, 2008, doi: 10.1016/j.jhazmat.2007.07.002. [123] Y. Li et al., “Methylene blue adsorption on graphene oxide/calcium alginate composites,” Carbohydr. Polym., vol. 95, no. 1, pp. 501–507, 2013, doi: 10.1016/j.carbpol.2013.01.094. [124] Y. Li et al., “Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes,” Chem. Eng. Res. Des., vol. 91, no. 2, pp. 361–368, 2013, doi: 10.1016/j.cherd.2012.07.007. [125] A. S. Franca, L. S. Oliveira, and M. E. Ferreira, “Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds,” Desalination, vol. 249, no. 1, pp. 267–272, 2009, doi: 10.1016/j.desal.2008.11.017. [126] G. A. Adebisi, Z. Z. Chowdhury, and P. A. Alaba, “Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent,” J. Clean. Prod., vol. 148, pp. 958–968, 2017, doi: 10.1016/j.jclepro.2017.02.047. [127] G. Crini and P. M. Badot, “Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature,” Prog. Polym. Sci., vol. 33, no. 4, pp. 399–447, 2008, doi: 10.1016/j.progpolymsci.2007.11.001. [128] O. Adam, “Removal of Resorcinol from Aqueous Solution by Activated Carbon: Isotherms, Thermodynamics and Kinetics,” Am. Chem. Sci. J., vol. 16, no. 1, pp. 1–13, 2016, doi: 10.9734/acsj/2016/27637. [129] C. Srinivasakannan and N. Balasubramaniam, “Analysis of various experimental methods and preparation of mesoporous activated carbon powders from sawdust using phosphoric acid,” Part. Sci. Technol., vol. 25, no. 6, pp. 535–548, 2007, doi: 10.1080/02726350701490896. [130] S. J. Allen, G. Mckay, and J. F. Porter, “Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems,” vol. 280, pp. 322–333, 2004, doi: 10.1016/j.jcis.2004.08.078. 103 [131] M. M. El Jamal, H. A. Awala, and M. M. El Jamal, “Equilibrium and kinetics study of some dyes onto feldspar,” no. Iv, pp. 45–52, 2011. [132] A. Regti, A. El Kassimi, M. R. Laamari, and M. El Haddad, “Competitive adsorption and optimization of binary mixture of textile dyes : A factorial design analysis,” J. Assoc. Arab Univ. Basic Appl. Sci., 2016, doi: 10.1016/j.jaubas.2016.07.005. [133] R. Farkas, “Methylene Blue Adsorption Study on Microcline Particles in the Function of Particle Size Range,” 2019. [134] M. Sohail et al., “Modified and improved Hummer’s synthesis of graphene oxide for capacitors applications,” Mod. Electron. Mater., vol. 3, no. 3, pp. 110– 116, 2017, doi: 10.1016/j.moem.2017.07.002. [135] W. Peng, G. Han, Y. Huang, Y. Cao, and S. Song, “Insight the effect of crystallinity of natural graphite on the electrochemical performance of reduced graphene oxide,” Results Phys., vol. 11, no. July, pp. 131–137, 2018, doi: 10.1016/j.rinp.2018.08.055. [136] G. J. Simandl, S. Paradis, and C. Akam, “Graphite deposit types , their origin , and economic significance,” Br. Columbia Geol. Surv. Pap., vol. 3, no. Symposium on Strategic and Critical Materials Proceedings, pp. 163–171, 2015. [137] C. W. Chang, M. H. Hon, and I. C. Leu, “Ultrasound-Assisted Preparation of Large-Area Few-Layer Graphene,” ECS J. Solid State Sci. Technol., vol. 4, no. 3, pp. M18–M23, 2015, doi: 10.1149/2.0261503jss. [138] C. H. Manoratne, S. R. D. Rosa, and I. R. M. Kottegoda, “XRD-HTA, UV Visible, FTIR and SEM Interpretation of Reduced Graphene Oxide Synthesized from High Purity Vein Graphite,” Mater. Sci. Res. India, vol. 14, no. 1, pp. 19– 30, 2017, doi: 10.13005/msri/140104. [139] N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, and C. H. Voon, “Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence,” Procedia Eng., vol. 184, pp. 469–477, 2017, doi: 10.1016/j.proeng.2017.04.118. 104 [140] S. N. Alam, N. Sharma, and L. Kumar, “Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO)*,” Graphene, vol. 06, no. 01, pp. 1–18, 2017, doi: 10.4236/graphene.2017.61001. [141] J. Wang and S. Kaskel, “Feature article: KOH activation of carbon-based materials for energy storage,” no. June 2004, 2012, doi: 10.1039/c2jm34066f. [142] F. F. Hatta, M. Z. A. Yahya, A. M. M. Ali, R. H. Y. Subban, M. K. Harun, and A. A. Mohamad, “Electrical conductivity studies on PVA/PVP-KOH alkaline solid polymer blend electrolyte,” Ionics (Kiel)., vol. 11, no. 5–6, pp. 418–422, 2005, doi: 10.1007/BF02430259. [143] A. C. Lua and T. Yang, “Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell,” J. Colloid Interface Sci., vol. 274, no. 2, pp. 594–601, 2004, doi: 10.1016/j.jcis.2003.10.001.