38 References [1] S. B. Kausley and A. B. Pandit, “Modelling of solid fuel stoves,” Fuel, no. 89, pp. 782–791, 2010. [2] M. Miltner, A. Makaruk, M. Harasek, and A. Friedl, “Computational fluid dynamic simulation of a solid biomass combustor: Modelling approaches,” Clean Technol. Environ. Policy, vol. 10, no. 2, pp. 165–174, 2008. [3] J. Chartier, P. Guernion, and I. Milo, “CFD modelling of municipal solid waste incineration,” in Progress in Computational Fluid Dynamics 7, 2007, pp. 19–24. [4] K. Jang, W. Han, and K. Y. Huh, “Simulation of moving-bed and fluidized- bed reactors by DPM and MPPIC in OpenFOAM,” in 11th OpenFOAM Workshop, 2016. [5] J. F. Davidson and D. Harrison, Fluidized particles. Cambridge: Cambridge University Press, 1963. [6] S. N. Oka, Fluidized Bed Combustion, 1st ed. New York: Marcel Dekker, 2004. [7] C. Y. Wen and Y. H. Yu, “Mechanics of fluidization,” in Chem. Eng. Prog. Symp. Ser., 1966, pp. 100–111. [8] C. G. Philippsen, A. C. F. Vilela, and L. D. Zen, “Fluidized bed modeling applied to the analysis of processes: Review and state of the art,” J. Mater. Res. Technol., vol. 4, no. 2, pp. 208–216, 2015. [9] W. C. Yang, Handbook of fluidization and fluid-particlesystems. New York: Taylor & Francis, 2003. [10] D. Kunii and O. Levenspiel, Fluidization engineering. New York: Jonh Wiley, 1969. [11] C. E. J. van Lare, “Mass transfer in gasfluidized beds: scaling, modeling and particle size influence,” Technische Universiteit Eindhoven, 1991. 39 [12] M. Mnndo, L. Rosendahl, C. Yin, and H. Sorensen, “Pulverized straw combustion in a low-NOx multifuel burner: Modeling the transition from coal to straw,” Fuel, no. 89, pp. 3051–3062, 2010. [13] The OpenFOAM Foundation, “OpenFOAM dev,” 2018. [Online]. Available: https://cpp.openfoam.org/dev/. [Accessed: 11-Dec-2018]. [14] J. K. A. T. Rajika and M. Narayana, “Modelling and simulation of wood chip combustion in a hot air generator system,” Springerplus, vol. 5, no. 1, p. 1166, 2016. [15] A. Berlemont, P. Achim, and Z. Chang, “Lagrangian approaches for particle collisions: The colliding particle velocity correlation in the multiple particles tracking method and in the stochastic approach,” Phys. Fluids, vol. 13, no. 10, pp. 2946–2956, 2001. [16] X. Wang, B. Jin, and W. Zhong, “Three-dimensional simulation of fluidized bed coal gasification,” Chem. Eng. Process. Process Intensif., vol. 48, no. 2, pp. 695–705, 2009. [17] S. Elghobashi, “On predicting particle-laden turbulent flows,” Appl. Sci. Res., vol. 52, no. 4, pp. 309–329, 1994. [18] M. J. Anderews and P. J. O’Rourke, “The multiphase particle-in-cell (MP- PIC) method for dense particulate flows,” Int. J. Multiph. Flow, vol. 22, no. 2, pp. 379–402, 1996. [19] S. Benzarti, H. Mhiri, and H. Bournot, “Drag models for Simulation Gas-Solid Flow in the Bubbling Fluidized Bed of FCC Particles,” Waset.Org, vol. 61, no. 1, pp. 1138–1143, 2012. [20] S. Ergun, “Fluid flow through packed columns,” Chem. Eng. Prog., vol. 48. pp. 89–94, 1952. [21] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, 2nd ed. Essex: Prentice Hall, 2007. [22] T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 2nd ed. 40 PA,USA: Edwards Inc, 2005. [23] M. Bellais, “Modelling of the pyrolysis of large wood particles,” KTH - Royal Institute of Technology, 2007. [24] S. Gerber, M. Oevermann, and F. Behrendt, “An Euler-Lagrange modeling approach for the simulation of wood gasification in fluidized beds,” in 4th European Combustion Meeting, 2009, pp. 1–6. [25] N. Prakash and T. Karunanithi, “Kinetic modeling in biomass pyrolysis - a review,” Appl. Sci. Res., vol. 4, no. 12, pp. 1627–1636, 2008. [26] H. Lu, W. Robert, G. Peirce, B. Ripa, and L. L. Baxter, “Comprehensive study of biomass particle combustion,” Energy and Fuels, vol. 22, no. 4, pp. 2826– 2839, 2008. [27] H. Thunman, F. Niklasson, F. Johnsson, and B. Leckner, “Composition of volatile gases and thermochemical properties of wood for modeling of fixed or fluidized beds,” Energy and Fuels, vol. 15, no. 6, pp. 1488–1497, 2001. [28] S. Sinha, A. Jhalani, M. R. Ravi, and A. Ray, “Modeling of pyrolysis in wood: a review,” SESI, vol. 1, no. 10, pp. 41–62, 2000. [29] N. Abani and A. F. Ghoniem, “Large eddy simulation of coal gasification in an entrained flow gasifier,” Fuel, no. 104, pp. 664–680, 2013. [30] D. M. Christ, “The Effect of Char Kinetics on the Combustion of Pulverized Coal under Oxyfuel Conditions,” Dissertation, RWTH Aachen University, 2013. [31] K. L. Smith, L. D. Smoot, T. H. Fletcher, and R. J. Pugmire, The structure and reaction processes of coal. N: Springer International Publishing, 1994. [32] T. Jurena, “Numerical Modelling of Grate Combustion,” Dissertation, Brno University of Technology, 2012. [33] Y. Haseli, J. A. van Oijen, and L. P. H. de Goey, “A detailed one-dimensional model of combustion of a woody biomass particle,” Bioresour. Technol., vol. 41 102, no. 20, pp. 9772–9782, 2011. [34] N. Fernando and M. Narayana, “A comprehensive two dimensional Computational Fluid Dynamics model for an updraft biomass gasifier,” Renew. Energy, vol. 99, pp. 698–710, 2016. [35] R. E. Treybal, Mass-Transfer operations, 3rd ed. Singapore: McGraw-Hill, 1981. [36] M. Frenklach, T. Bowman, and G. Smith, “GRI-Mech,” Gas Technology Institute (GTI). [Online]. Available: http://combustion.berkeley.edu/gri- mech/index.htm. [37] S. V. Patankar, Numerical Heat Transfer and Fluid Flow. USA: Taylor & Francis, 1980. [38] H. Liu, “CFD Modeling of Biomass Gasification Using a Circulating Fluidized Bed Reactor,” Dissertation, University of Waterloo, 2014. [39] J. Kramb, J. Konttinen, A. Gómez-Barea, A. Moilanen, and K. Umeki, “Modeling biomass char gasification kinetics for improving prediction of carbon conversion in a fluidized bed gasifier,” Fuel, vol. 132, pp. 107–115, 2014. [40] M. Kumar and A. F. Ghoniem, “Multiphysics simulations of entrained flow gasification. Part I: Validating the Nonreacting Flow Solver and the Particle Turbulent Dispersion Model,” Energy Fuels, vol. 26, no. 1, pp. 464–479, 2012. [41] J. Sodja, “Turbulence models in CFD,” University of Ljubljana, 2007. [42] H. E. Tahry, “k-ε Equation for Compressible Reciprocating Engine Flows.pdf,” Energy, vol. 7, pp. 345–353, 1983. [43] P. Spalart, “The uses of DES: natural, extended and improper,” 2005. [44] M. L. Shur, P. R. Spalart, M. K. Strelets, and A. K. Travin, “An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated 42 Flows,” Flow, Turbul. Combust., vol. 95, no. 4, pp. 709–737, Dec. 2015. [45] S. Gomez, “Changes and Settings for Standard Turbulence Model Implementation in OpenFOAM,” New Mexico, 2006. [46] F. R. Menter, M. Kuntz, and R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model,” Turbul. Heat Mass Transf. 4, vol. 4, pp. 625–632, 2003. [47] A. P. Robinson, H. C. Coote, and P. Reupke, “Report on a Visit to Sri Lanka to carry-out a techno-economic appraisal of the NRI rice husk burner in collaboration with the Rice Processing Research and Development Centre,” UK, 1991. [48] X. Ku, T. Li, and T. Løvås, “CFD-DEM simulation of biomass gasification with steam in a fluidized bed reactor,” Chem. Eng. Sci., vol. 122, pp. 270–283, 2015. [49] Y. Tsuji, T. Kawaguchi, and T. Tanaka, “Discrete particle simulation of two- dimensional fluidized bed,” Powder Technol., vol. 77, no. 1, pp. 79–87, 1993. [50] B. H. Xu and A. B. Yu, “Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics,” Chem. Eng. Sci., vol. 52, no. 16, pp. 2785–2809, 1997. [51] T. Song, J. Wu, L. Shen, and J. Xiao, “Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds,” Biomass and Bioenergy, vol. 36, pp. 258–267, 2012. [52] D. G. C. Wickramasinghe, M. Narayana, and A. D. U. S. Amarasinghe, “Eulerian-Lagrangian Approach for Modeling of Biomass Fluidized Bed Combustion,” in Vidulka: National Energy Symposium, 2017, pp. 209–213. 43 Appendix A: Publications 1. D. G. C Wickramasinghe, M. Narayana, and A. D. U. S. Amarasinghe, “Numerical Simulation of Suspension Biomass Combustor with Two Chambers,” in 2018 Moratuwa Engineering Research Conference (MERCon), Moratuwa, 2018, pp. 226–230. doi: 10.1109/MERCon.2018.8421947, https://ieeexplore.ieee.org/abstract/document/8421947/ 2. D. G. C Wickramasinghe, M. Narayana, and A. D. U. S. Amarasinghe, “Eulerian-Lagrangian Approach for Modeling of Biomass Fluidized Bed Combustion,” in Vidulka: National Energy Symposium, SL, 2017, pp. 209– 213.