178 REFERENCES Adams, J., Khan, H. T., & Raeside, R. (2014). Research methods for business and social science students. India: Sage Publications. Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24(4), 665-694. Ahmetović, E., & Grossmann, I. E. (2011). Global superstructure optimisation for the design of integrated process water networks. AIChE Journal, 57(2), 434-457. Ahmetović, E., Ibrić, N., Kravanja, Z., & Grossmann, I. E. (2015). Water and energy integration: A comprehensive literature review of non-isothermal water network synthesis. Computers & Chemical Engineering, 82, 144-171. Aissani, L., Lacassagne, A., Bahers, J. B., & Féon, S. L. (2019). Life cycle assessment of industrial symbiosis: A critical review of relevant reference scenarios. Journal of Industrial Ecology. 23(4), 972-985. Amarasiri S. (2015). Caring for water. (2nd edition). Greater Kandy Water Supply Project National Water Supply & Drainage Board Pahala Kondadeniya, Katugastota: Sri Lanka. ISBN: 978-955-4731-04-2. Amarasiri, S. (2008). Caring for water. In Nugegoda: Sri Lanka Nature Forum. 1-161. Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. Ashton, W. S. (2009). The structure, function, and evolution of a regional industrial ecosystem. Journal of Industrial Ecology, 13(2), 228-246. Asian Development Bank – ADB. (2017). Experience with donor coordination: The case of water supply and sanitation in Sri Lanka. Aviso, K. B. (2014). Design of robust water exchange networks for eco-industrial symbiosis. Process Safety and Environmental Protection, 92(2), 160-170. Aviso, K. B., Tan, R. R., Culaba, A. B., & Cruz Jr, J. B. (2010). Bi-level fuzzy optimization approach for water exchange in eco-industrial parks. Process Safety and Environmental Protection, 88(1), 31-40. Aviso, K. B., Tan, R. R., Culaba, A. B., & Cruz Jr, J. B. (2011). Fuzzy input–output model for optimising eco-industrial supply chains under water footprint constraints. Journal of Cleaner Production, 19(2-3), 187-196. 179 Ayres, R. U., & Ayres, L. (Eds.). (2002). A handbook of industrial ecology. Edward Elgar Publishing. Baas, L. (2008). Industrial symbiosis in the Rotterdam Harbour and Industry Complex: Reflections on the interconnection of the techno‐sphere with the social system. Business Strategy and the Environment, 17(5), 330-340. Baas, L. (2011). Planning and uncovering industrial symbiosis: Comparing the Rotterdam and Östergötland regions. Business Strategy and the Environment, 20(7), 428-440. Baas, L. W., & Boons, F. A. (2004). An industrial ecology project in practice: Exploring the boundaries of decision-making levels in regional industrial systems. Journal of Cleaner Production, 12(8-10), 1073-1085. Baldassarre, B., Schepers, M., Bocken, N., Cuppen, E., Korevaar, G., & Calabretta, G. (2019). Industrial symbiosis: towards a design process for eco-industrial clusters by integrating circular economy and industrial ecology perspectives. Journal of cleaner production, 216, 446-460. Becker, D., Jungfer, C., & Track, T. (2019). Integrated industrial water management– challenges, solutions, and future priorities. Chemie Ingenieur Technik, 91(10), 1367-1374. Board of Investments – BOI. (2011). Environmental norms. Board of Investments of Sri Lanka. Boix, M., Montastruc, L., Azzaro-Pantel, C., & Domenech, S. (2015). Optimisation methods applied to the design of eco-industrial parks: A literature review. Journal of Cleaner Production, 87, 303-317. Boons, F., Chertow, M., Park, J., Spekkink, W., & Shi, H. (2017). Industrial symbiosis dynamics and the problem of equivalence: Proposal for a comparative framework. Journal of Industrial Ecology, 21(4), 938-952. Boons, F., Spekkink, W., & Jiao, W. (2014). A process perspective on industrial symbiosis: Theory, methodology, and application. Journal of Industrial Ecology, 18(3), 341-355. Boons, F., Spekkink, W., & Mouzakitis, Y. (2011). The dynamics of industrial symbiosis: A proposal for a conceptual framework based upon a comprehensive literature review. Journal of Cleaner Production, 19(9-10), 905-911. Branson, R. (2016). Re-constructing Kalundborg: The reality of Bilateral symbiosis and other insights. Journal of Cleaner Production, 112, 4344-4352. 180 Bu, T., Li, J., Li, H., Tian, C., Su, J., Tong, G., ... & Huang, F. (2021). Lead halide– templated crystallisation of methylamine-free perovskite for efficient photovoltaic modules. Science, 372(6548), 1327-1332. Carr, A. J. P. (1998). Choctaw Eco-Industrial Park: An ecological approach to industrial land-use planning and design. Landscape and urban planning, 42(2-4), 239-257. Central Environmental Authority - CEA. (2019). The Gazette of the Democratic Socialist Republic of Sri Lanka Extraordinary. Central Environmental Authority: Sri Lanka. Chen, L., Wang, R., Yang, J., & Shi, Y. (2010). Structural complexity analysis for industrial ecosystems: A case study on LuBei industrial ecosystem in China. Ecological Complexity, 7(2), 179-187. Chertow, M. R. (2000). Industrial symbiosis: Literature and taxonomy. Annual Review of Energy and the Environment, 25(1), 313-337. Chertow, M. R. (2007). “Uncovering” industrial symbiosis. Journal of Industrial Ecology, 11(1), 11-30. Chertow, M. R., & Lombardi, D. R. (2005). Quantifying economic and environmental benefits of co-located firms. Environmental Science & Technology, 39(17), 6535-6541. Chertow, M., & Ehrenfeld, J. (2012). Organising self‐organising systems: Toward a theory of industrial symbiosis. Journal of Industrial Ecology, 16(1), 13-27. Chew, I. M. L., Tan, R., Ng, D. K. S., Foo, D. C. Y., Majozi, T., & Gouws, J. (2008). Synthesis of direct and indirect interplant water network. Industrial & Engineering Chemistry Research, 47(23), 9485-9496. Chilisa, B. (2011). Indigenous research methodologies. Sage Publications. Christensen, J. (2006). The history of the industrial symbiosis at Kalundborg, Danemark. In Scientific Workshop ‘Frontiers of Research in Industrial Ecology. 27 November – 1 December, University of Lausanne. Clift, R., & Druckman, A. (Eds.). (2015). Taking stock of industrial ecology. Springer. Commoner, B. (1971). The closing circle: nature, man and technology. Random House: New York, NY. Connelly, L., & Koshland, C. P. (1996). Industrial ecology: A critical review. International Journal of Environment and Pollution, 6(2/3), 89-112. 181 Costa, I., & Ferrão, P. (2010). A case study of industrial symbiosis development using a middle-out approach. Journal of Cleaner Production, 18(10-11), 984-992. Costa, I., Massard, G., & Agarwal, A. (2010). Waste management policies for industrial symbiosis development: Case studies in European countries. Journal of Cleaner Production, 18(8), 815-822. Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches, (3rd ed.). Sage Publications. Creswell, J.W. (2007). Qualitative inquiry and research design. (2nd ed.). California: Sage Publications. Creswell, J.W., & Creswell, J.D. (2018). Research design: qualitative, quantitative, and mixed methods approaches, (5th ed.). Los Angeles: CA: Sage Publications. Desrochers, P. (2004). Industrial symbiosis: The case for market coordination. Journal of Cleaner Production, 12(8-10), 1099-1110. Desrochers, P., & Leppälä, S. (2010). Industrial symbiosis: Old wine in recycled bottles? Some perspective from the history of economic and geographical thought. International Regional Science Review, 33(3), 338-361. Deutz, P. (2014). Food for thought: Seeking the essence of industrial symbiosis. In Pathways to environmental sustainability (pp. 3-11). Cham: Springer. Diemer, A. (2017). Industrial symbiosis and European policy. In Sustainable development and European Union: challenges and prospects, Oeconomia. Ding, L., Lv, Z., Han, M., Zhao, X., & Wang, W. (2019). Forecasting China's wastewater discharge using dynamic factors and mixed-frequency data. Environmental Pollution, 255, 113148. Distefano, T., & Kelly, S. (2017). Are we in deep water? Water scarcity and its limits to economic growth. Ecological Economics, 142, 130-147. Domenech, T., & Davies, M. (2009). The social aspects of industrial symbiosis: The application of social network analysis to industrial symbiosis networks. Progress in Industrial Ecology, an International Journal, 6(1), 68-99. Domenech, T., & Davies, M. (2011). Structure and morphology of industrial symbiosis networks: The case of Kalundborg. Procedia-Social and Behavioral Sciences, 10, 79-89. Domenech, T., Bleischwitz, R., Doranova, A., Panayotopoulos, D., & Roman, L. (2019). Mapping industrial symbiosis development in Europe: Typologies of 182 networks, characteristics, performance and contribution to the circular economy. Resources, Conservation and Recycling, 141, 76-98. Eguavoen, I., & Youkhana, E. (2008). Small towns face big challenge: The management of piped systems after the water sector reform in Ghana. ZEF [University of Bonn, Center for Development Research] Working Paper series, No. 26. Ehrenfeld, J., & Gertler, N. (1997). Industrial ecology in practice: The evolution of interdependence at Kalundborg. Journal of Industrial Ecology, 1(1), 67-79. Erkman, S. (1997). Industrial ecology: an historical view. Journal of Cleaner Production, 5(1-2), 1-10. European Commission. (2017). “The role of waste-to-energy in the circular economy”. In: Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, p. 11. Fichtner, W., Tietze-Stöckinger, I., Frank, M., & Rentz, O. (2005). Barriers of interorganisational environmental management: Two case studies on industrial symbiosis. Progress in Industrial Ecology: an International Journal, 2(1), 73-88. FitzGibbon, J., & Mensah, K. O. (2012). Climate change as a wicked problem: An evaluation of the institutional context for rural water management in Ghana. Sage Open, 2(2), 2158244012448487. Frosch, R. A. (1992). Industrial ecology: a philosophical introduction. Proceedings of the national academy of sciences, 89(3), 800-803. Frosch, R. A., & Gallopoulos, N. E. (1989). Strategies for manufacturing. Scientific American, 261(3), 144-152. Fuller, S., & Petersen, S. (1996). Life-cycle costing manual for the federal energy management program, NIST Handbook 135.6.2. Gavrish, D. (2017). Industrial Symbiosis. A case of Oman. [Unpublished Master’s thesis]. The International Institute for Industrial environmental economics, Sweden. Gertler, N. (1995). Industry ecosystems: Developing sustainable industrial structures. [Unpublished Doctoral dissertation]. Massachusetts Institute of Technology. Gibbs, D. (2008). Industrial symbiosis and eco‐industrial development: An introduction. Geography Compass, 2(4), 1138-1154. 183 Gibbs, D., & Deutz, P. (2007). Reflections on implementing industrial ecology through eco-industrial park development. Journal of Cleaner Production, 15(17), 1683-1695. Gibbs, D., Deutz, P., & Proctor, A. (2005). Industrial ecology and eco‐industrial development: A potential paradigm for local and regional development?. Regional Studies, 39(2), 171-183. Gill, J., & Johnson, P. (2002). Research methods for managers, (3rd ed.). Los Angeles, CA: Sage Publications. Golev, A., Corder, G. D., & Giurco, D. P. (2015). Barriers to industrial symbiosis: Insights from the use of a maturity grid. Journal of Industrial Ecology, 19(1), 141-153. Graedel, T. E., & Lifset, R. J. (2016). Industrial ecology’s first decade. In Taking stock of industrial ecology (pp. 3-20). Cham: Springer. Grant, G. B., Seager, T. P., Massard, G., & Nies, L. (2010). Information and communication technology for industrial symbiosis. Journal of Industrial Ecology, 14(5), 740-753. Greer, L., Keane, S. E., & Lin, Z. (2010). NRDC’s Ten Best Practices for Textile Mills to save money and reduce pollution. Energy, 1(1.8). Gregson, N., Crang, M., Ahamed, F. U., Akter, N., Ferdous, R., Foisal, S., & Hudson, R. (2012). Territorial agglomeration and industrial symbiosis: Sitakunda- Bhatiary, Bangladesh, as a secondary processing complex. Economic Geography, 88(1), 37-58. Guthrie, J. (2014). In defence of disclosure studies and the use of content analysis: A research note. Journal of intellectual capital. 15(2). Han, F., Liu, Y., Liu, W., & Cui, Z. (2017). Circular economy measures that boost the upgrade of an aluminum industrial park. Journal of Cleaner Production, 168, 1289-1296. Handani, Z. B., Hashim, H., Alwi, S. W., & Manan, Z. A. (2011). A mixed integer linear programming (MILP) model for optimal design of water network. In 2011 Fourth International Conference on Modeling, Simulation and Applied Optimisation, April (pp. 1-6). Institute of Electrical and Electronic Engineers (IEEE). Haque, M. S., Nahar, N., & Sayem, S. M. (2021). Industrial water management and sustainability: Development of SIWP tool for textile industries of Bangladesh. Water Resources and Industry, 25, 100145. 184 Harris, L. R., & Brown, G. T. (2010). Mixing interview and questionnaire methods: Practical problems in aligning data. Practical Assessment, Research, and Evaluation, 15(1), 1. Heeres, R. R., Vermeulen, W. J., & De Walle, F. B. (2004). Eco-industrial park initiatives in the USA and the Netherlands: First lessons. Journal of Cleaner Production, 12(8-10), 985-995. Herczeg, G., Akkerman, R., & Hauschild, M. Z. (2018). Supply chain collaboration in industrial symbiosis networks. Journal of cleaner production, 171, 1058- 1067. Hina, H., Nafees, M., & Ahmad, T. (2021). Treatment of industrial wastewater with gamma irradiation for removal of organic load in terms of biological and chemical oxygen demand. Heliyon, 7(2), e05972. Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., ... & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95(5), 701-722. Hristov, I., Appolloni, A., Chirico, A., & Cheng, W. (2021). The role of the environmental dimension in the performance management system: A systematic review and conceptual framework. Journal of Cleaner Production, 293, 126075. Huang, M., Wang, Z., & Chen, T. (2019). Analysis on the theory and practice of industrial symbiosis based on bibliometrics and social network analysis. Journal of Cleaner Production, 213, 956-967. Imbulana, L. (2010). Drought management in Sri Lanka. South Asia Association of Regional Coorperation (SAARC) Disaster Management Centre, New Delhi. Jacobsen, N. B. (2006). Industrial symbiosis in Kalundborg, Denmark: A quantitative assessment of economic and environmental aspects. Journal of Industrial Ecology, 10(1-2), 239-255. Jayathilake, N., Kumara, I. U., & Fernando, S. (2020). Solid and liquid waste management and resource recovery in Sri Lanka: A 20 City Analysis. International Water Management Institute: Colombo, Sri Lanka. Kagioglou, M., Cooper, R., Aouad, G., & Sexton, M. (2000). Rethinking construction: the generic design and construction process protocol. Engineering, Construction and Architectural Management. 7(2), 141-153. Kant, R. (2012). Textile dyeing industry an environmental hazard, Natural Science, 4(1), 22-26. 185 Karunasena, G. I. (2012). Capacity building for post disaster waste management: Construction and demolition waste. [Doctoral dissertation]. University of Salford, UK. Karunasena, G.I., Mallawaarachchi H., & Gunasekara, J.D.E.M. (2013). Rain water harvesting in urban buildings. In Proceedings of 4th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka, 13-15 December 2013. Kim, H. & Lee, T. (2007). Pareto optimality of industrial symbiosis network: Benefits sharing of wastewater neutralisation network in Yeosu EIP, In Proceedings of PSE Asia, August, Xian, China. Klemeš, J. J. (2012). Industrial water recycle/reuse. Current Opinion in Chemical Engineering, 1(3), 238-245. Kohn, L. T. (1997). Methods in case study analysis. Washington, DC: Center for Studying Health System Change. Kurup, B. R. (2007). Methodology for capturing environmental, social and economic implications of industrial symbiosis in heavy industrial areas [Doctoral dissertation], Curtin University. Lee, H. S. (2015). Puerto Rico Demonstration Project: Replacement of Bridge No. 1828 on PR-140 in Barceloneta, Puerto Rico. Final Technical Brief, Highways for Life. Li, B., Xiang, P., Hu, M., Zhang, C., & Dong, L. (2017). The vulnerability of industrial symbiosis: A case study of Qijiang Industrial Park, China. Journal of Cleaner Production, 157, 267-277. Lieder, M., & Rashid, A. (2016). Towards circular economy implementation: A comprehensive review in context of manufacturing industry. Journal of Cleaner Production, 115, 36-51. Lifset, R. J. & Graedel, T.E. (2002). Industrial ecology: Goals and definitions. In A Handbook of Industrial Ecology (pp. 3-15). USA: Edward Elgar Publishing. Lincoln, Y. S., & Guba, E. G. (2000). The only generalisation is: There is no generalisation. In Case study method, 27-44. Liu, Z., Adams, M., Cote, R. P., Geng, Y., & Li, Y. (2018). Comparative study on the pathways of industrial parks towards sustainable development between China and Canada. Resources, Conservation and Recycling, 128, 417-425. Lohse, S. (2017). Pragmatism, ontology, and philosophy of the social sciences in practice. Philosophy of the Social Sciences, 47(1), 3-27. 186 Lombardi, D. R., & Laybourn, P. (2012). Redefining industrial symbiosis: Crossing academic–practitioner boundaries. Journal of Industrial Ecology, 16(1), 28- 37. Lowe, E. A. (2001). Eco-industrial park handbook for Asian developing countries: Report to Asian Development Bank. Oakland, CA: Environment Department, Indigo Development. Lowe, E. A., & Evans, L. K. (1995). Industrial ecology and industrial ecosystems. Journal of Cleaner Production, 3(1-2), 47-53. Maarouf, H. (2019). Pragmatism as a supportive paradigm for the mixed research approach: Conceptualising the ontological, epistemological, and axiological stances of pragmatism. International Business Research, 12(9), 1-12. Mahrach, M., Miranda, G., León, C., & Segredo, E. (2020). Comparison between single and multi-objective evolutionary algorithms to solve the knapsack problem and the travelling salesman problem. Mathematics, 8(11), 2018. Mallawaarachchi, H., Sandanayake, Y.G., Karunasena, G., & Liu, C. (2020). Unveiling the conceptual development of industrial symbiosis: Bibliometric analysis. Journal of Cleaner Production, 258, 120618 Manu, P. A. (2012). An investigation into the accident causal influence of construction project features. [PhD thesis]. University of Wolverhampton. Maqbool, A., Mendez Alva, F. and Van Eetvelde, G. (2019). An assessment of European information technology tools to support industrial symbiosis. Sustainability, 11(1), 131. Massard, G., Jacquat, O., & Zürcher, D. (2014). International survey on eco-innovation parks. In Workshop on eco-innovation parks (Vol. 20, p. 12 Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2(2), e1500323. Milani, A., Schluter, L & Gjerding, A. N. (2018). An ecosystem analysis of industrial symbiosis development in Aalborg, Denmark, Denmark: Department of Business and Management, Innovation, Knowledge and Entrepreneurial Dynamics, Aalborg University. Ministry of Forestry and Environment. (2001). State of the environmental report of Sri Lanka 2001. United Nations Environment Programme. Mirata, M. (2004). Experiences from early stages of a national industrial symbiosis programme in the UK: Determinants and coordination challenges. Journal of Cleaner Production, 12(8-10), 967-983. 187 Mirata, M., & Emtairah, T. (2005). Industrial symbiosis networks and the contribution to environmental innovation: The case of the Landskrona industrial symbiosis programme. Journal of Cleaner Production, 13(10-11), 993-1002. Moktadir, M. A., Kumar, A., Ali, S. M., Paul, S. K., Sultana, R., & Rezaei, J. (2020). Critical success factors for a circular economy: Implications for business strategy and the environment. Business Strategy and the Environment, 29(8), 3611-3635. Momirski, L. A. (2019, February). Industrial Symbiosis and Land Use. In IOP Conference Series: Materials Science and Engineering (Vol. 471, No. 11, p. 112089). IOP Publishing. Montastruc, L., Boix, M., Pibouleau, L., Azzaro-Pantel, C., & Domenech, S. (2013). On the flexibility of an eco-industrial park (EIP) for managing industrial water. Journal of Cleaner Production, 43, 1-11. Morales, E. M., Diemer, A., Cervantes, G., & Carrillo-González, G. (2019). “By- product synergy” changes in the industrial symbiosis dynamics at the Altamira-Tampico industrial corridor: 20 years of industrial ecology in Mexico. Resources, Conservation and Recycling, 140, 235-245. Mortensen, L., & Kørnøv, L. (2019). Critical factors for industrial symbiosis emergence process. Journal of cleaner production, 212, 56-69. National Audit Office Sri Lanka - NASL. (2019). Annual Report of the Auditor General. National Audit Office: Sri Lanka. Navarro-Ramírez, V., Ramírez-Hernandez, J., Gil-Samaniego, M., & Rodríguez- Burgueño, J. E. (2020). Methodological frameworks to assess sustainable water resources management in industry: A review. Ecological Indicators, 119, 106819. Neale, P., Thapa, S., & Boyce, C. (2006). Preparing a case study: A guide for designing and conducting a case study for evaluation input. (pp. 3-4). Watertown: Pathfinder international. Ngene, B. U., Nwafor, C. O., Bamigboye, G. O., Ogbiye, A. S., Ogundare, J. O., & Akpan, V. E. (2021). Assessment of water resources development and exploitation in Nigeria: A review of integrated water resources management approach. Heliyon, 7(1), e05955. Nobel, C. E., & Allen, D. T. (2000). Using geographic information systems (GIS) in industrial water reuse modelling. Process Safety and Environmental Protection, 78(4), 295-303. 188 Nobel, C. E., & Allen, D. T. (2000). Using geographic information systems (GIS) in industrial water reuse modelling. Process Safety and Environmental Protection, 78(4), 295-303. Nobre, G. C., & Tavares, E. (2021). The quest for a circular economy final definition: A scientific perspective. Journal of Cleaner Production, 314, 127973. Oude Essink, G. H. P., van Baaren, E. S., & de Louw, P. G. (2010). Effects of climate change on coastal groundwater systems: A modelling study in the Netherlands. Water Resources Research, 46(10). Paquin, R. L., Tilleman, S. G., & Howard‐Grenville, J. (2014). Is There Cash in that Trash? Factors influencing industrial symbiosis exchange initiation and completion. Journal of Industrial Ecology, 18(2), 268-279. Paquin, R., & Howard-Grenville, J. (2009). Facilitating regional industrial symbiosis: Network growth in the UK’s National Industrial Symbiosis Programme. In The social embeddedness of industrial ecology, (pp.103-128). Park, J., Park, J. M., & Park, H. S. (2019). Scaling‐up of industrial symbiosis in the Korean National Eco‐Industrial Park Program: Examining its evolution over the 10 years between 2005–2014. Journal of Industrial Ecology, 23(1), 197- 207. Patala, S., Hämäläinen, S., Jalkala, A., & Pesonen, H. L. (2014). Towards a broader perspective on the forms of eco-industrial networks. Journal of Cleaner Production, 82, 166-178. Patrucco, P. P. (2009). Collective knowledge production costs and the dynamics of technological systems. Economics of Innovation and New Technology, 18(3), 295-310. Pauw, A., & Louw, K. (2012). Urbanisation drives a reduction in functional diversity in a guild of nectar-feeding birds. Ecology and Society, 17(2). Art. 27. Perera, L. K. G., Uyasatian, U., & Dilokwanich, S. (2007). Utilization of sludge from Biyagama common wastewater treatment plant as fertiliser and soil conditioner in Sri Lanka. Pham, B. T., Pradhan, B., Bui, D. T., Prakash, I., & Dholakia, M. B. (2016). A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environmental Modelling & Software, 84, 240-250. 189 Phan, T. D., Bertone, E., & Stewart, R. A. (2021). Critical review of system dynamics modelling applications for water resources planning and management. Cleaner Environmental Systems, 2, 100031. Piwowar, A., Dzikuć, M., & Dzikuć, M. (2021). Water management in Poland in terms of reducing the emissions from agricultural sources–current status and challenges. Cleaner Engineering and Technology, 2, 100082. Potting, J., Hekkert, M. P., Worrell, E., & Hanemaaijer, A. (2017). Circular economy: measuring innovation in the product chain. Planbureau voor de Leefomgeving, (2544). Premachandra, A., O’Brien, S., Perna, N., McGivern, J., LaRue, R., & Latulippe, D. R. (2021). Treatment of complex multi-sourced industrial wastewater—New opportunities for nanofiltration membranes. Chemical Engineering Research and Design, 168, 499-509. Prosman, E. J., & Sacchi, R. (2018). New environmental supplier selection criteria for circular supply chains: Lessons from a consequential LCA study on waste recovery. Journal of Cleaner Production, 172, 2782-2792. Puente, M. R., Arozamena, E. R., & Evans, S. (2015). Industrial symbiosis opportunities for small and medium sized enterprises: preliminary study in the Besaya region (Cantabria, Northern Spain). Journal of Cleaner Production, 87, 357-374. Raghuvanshi, S., Bhakar, V., Sowmya, C., & Sangwan, K. S. (2017). Waste water treatment plant life cycle assessment: treatment process to reuse of water. Procedia CIRP, 61, 761-766. Ram, S. A., & Irfan, Z. B. (2021). Application of system thinking causal loop modelling in understanding water crisis in India: a case for sustainable Integrated Water resources management across sectors. Hydro Research, 4, 1-10. Robson, C. (2002). Real world research, (2nd ed.). Oxford: Blackwell. Romnée, A., Vandervaeren, C., Breda, O., & De Temmerman, N. (2019). A greenhouse that reduces greenhouse effect: How to create a circular activity with construction waste?. In IOP Conference Series: Earth and Environmental Science (Vol. 225, No. 1, p. 012035). IOP Publishing. Rovanto, I. K., & Bask, A. (2021). Systemic circular business model application at the company, supply chain and society levels—A view into circular economy native and adopter companies. Business Strategy and the Environment, 30(2), 1153-1173. 190 Rubio-Castro, E., Serna-González, M., Ponce-Ortega, J. M., & Morales-Cabrera, M. A. (2011). Optimisation of mechanical draft counter flow wet-cooling towers using a rigorous model. Applied Thermal Engineering, 31(16), 3615-3628. Saavedra, Y. M., Iritani, D. R., Pavan, A. L., & Ometto, A. R. (2018). Theoretical contribution of industrial ecology to circular economy. Journal of Cleaner Production, 170, 1514-1522. Saidan, M. N. (2020). Estimation of industrial water demand and reclamation in Jordan: a cross-sectional analysis. Water Resources and Industry, 23, 100129. Saunders, M. N. K., Lewis, P., & Thornhill, A. (2019). Research methods for Business Students. (4th ed.). UK: Pearson Education Limited. Schaffartzik, A., Mayer, A., Gingrich, S., Eisenmenger, N., Loy, C., & Krausmann, F. (2014). The global metabolic transition: Regional patterns and trends of global material flows, 1950–2010. Global Environmental Change, 26, 87-97. Seckler, D., Barker, R., & Amarasinghe, U. (1999). Water scarcity in the twenty-first century. International Journal of Water Resources Development, 15(1-2), 29- 42. Shakil, M. S. Z., & Mostafa, M. G. (2021). Water quality assessment of paper mills effluent discharge areas. Al-Nahrain Journal of Science, 24(3), 63-72. Shi, X., & Li, X. (2019). A symbiosis-based life cycle management approach for sustainable resource flows of industrial ecosystem. Journal of Cleaner Production, 226, 324-335. Singh, A., & Lou, H. H. (2006). Hierarchical pareto optimisation for the sustainable development of industrial ecosystems. Industrial & Engineering Chemistry Research, 45(9), 3265-3279. Song, X., Geng, Y., Dong, H., & Chen, W. (2018). Social network analysis on industrial symbiosis: A case of Gujiao eco-industrial park. Journal of Cleaner Production, 193, 414-423. Streefland, T. A., & Krozer, Y. (2018). Wicked water systems: A review of challenges and opportunities. Chapter in M. Ergen (Ed.) Urban agglomeration. Sun, L., Spekkink, W., Cuppen, E., & Korevaar, G. (2017). Coordination of industrial symbiosis through anchoring. Sustainability, 9(4), 549. Sunet, Z. Y., Luan, X., & Li, G. D. (2017). Doppler current meter based on two- machine communication between STM32 and OMAP. Instruments. Tech. Sensor, 87, 147-155. 191 Tan, R. R., Aviso, K. B., Cruz Jr, J. B., & Culaba, A. B. (2011). A note on an extended fuzzy bi-level optimisation approach for water exchange in eco-industrial parks with hub topology. Process Safety and Environmental Protection, 89(2), 106-111. Tao, Y., Evans, S., Wen, Z., & Ma, M. (2019). The influence of policy on industrial symbiosis from the firm's perspective: A framework. Journal of Cleaner Production, 213, 1172-1187. Taskhiri, M. S., Tan, R. R., & Chiu, A. S. (2011). Emergy-based fuzzy optimisation approach for water reuse in an eco-industrial park. Resources, Conservation and Recycling, 55(7), 730-737. Tellis, W. (1997). Application of a case study methodology. The Qualitative Report, 3(3), 1-19. Tiu, B. T. C., & Cruz, D. E. (2017). An MILP model for optimising water exchanges in eco-industrial parks considering water quality. Resources, Conservation and Recycling, 119, 89-96. Tong, T., & Elimelech, M. (2016). The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environmental Science & Technology, 50(13), 6846-6855. United Nations – UN. (2016). UN Resolution 71/222 - Water for Sustainable Development”, 2018-2028. https://www.unwater.org/international-high- level-conference-international-decade-action/. United Nations (UN) - Water, (2021). UN world water development report. https://www.unwater.org/publication_categories/world-water-development- report/. United Nations General Assembly (2015). Sustainable development goals. https://www.un.org/dppa/decolonisation/en/ga/70th-session-2015 Uusikartano, J., Saha, P., & Aarikka-Stenroos, L. (2022). The industrial symbiosis process as an interplay of public and private agency: Comparing two cases. Journal of Cleaner Production, 344, 130996. Valentine, S. V. (2016). Kalundborg Symbiosis: fostering progressive innovation in environmental networks. Journal of Cleaner Production, 118, 65-77. Vallino, E., Ridolfi, L., & Laio, F. (2020). Measuring economic water scarcity in agriculture: a cross-country empirical investigation. Environmental Science & Policy, 114, 73-85. 192 van Beers, D., Bossilkov, A., Corder, G., & van Berkel, R. (2007). Industrial symbiosis in the Australian minerals industry: the cases of Kwinana and Gladstone. Journal of Industrial Ecology, 11(1), 55-72. Van Berkel, R., Fujita, T., Hashimoto, S., & Geng, Y. (2009). Industrial and urban symbiosis in Japan: Analysis of the Eco-Town program 1997–2006. Journal of Environmental Management, 90(3), 1544-1556. Venkatesan, G., & Subramani, T. (2018). Environmental degradation due to the Industrial Wastewater discharge in Vellore District, Tamil Nadu, India. Indial Journal of Geo-Marine Sciences, 47(11), 2255-2259. Voulvoulis, N. (2018). Water reuse from a circular economy perspective and potential risks from an unregulated approach. Current Opinion in Environmental Science & Health, 2, 32-45. Wabiri, N., Rangasami, J., & Chasela, C. (2016). A desk study to inform development and testing of tools for the profiling of HIV risks in predefined HIV hotspots in selected districts in South Africa. South African National AIDS Council (SANAC) Wadström, C., Johansson, M., & Wallén, M. (2021). A framework for studying outcomes in industrial symbiosis. Renewable and Sustainable Energy Reviews, 151, 111526. Walls, J. L., & Paquin, R. L. (2015). Organisational perspectives of industrial symbiosis: A review and synthesis. Organisation & Environment, 28(1), 32- 53. Walsh, B. P., Cusack, D. O., & O’Sullivan, D. T. J. (2016). An industrial water management value system framework development. Sustainable Production and Consumption, 5, 82-93. Wanasinghe, W. C. S., Gunarathna, M. H. J. P., Herath, H. M. P. I. K., & Jayasinghe, G. Y. (2018). Drinking water quality on chronic kidney disease of unknown aetiology (CKDu) in Ulagalla cascade, Sri Lanka. Sabaragamuwa University Journal, 16(1), 17-27. Wang, Q., & Yang, Z. (2016). Industrial water pollution, water environment treatment, and health risks in China. Environmental Pollution, 218, 358-365 Wang, X. C., Jiang, P., Yang, L., Van Fan, Y., Klemeš, J. J., & Wang, Y. (2021). Extended water-energy nexus contribution to environmentally-related Sustainable Development Goals. Renewable and Sustainable Energy Reviews, 150, 111485. 193 Wang, Y. P., & Smith, R. (1994). Wastewater minimisation. Chemical Engineering Science, 49(7), 981-1006. Weerasinghe, R. P. N. P., and Sandanayake, Y. G., (2017). Collaborative facilities management model: Sri Lankan perspective. Built Environment Project and Asset Management, 7(3), 284-299. Wen, Z., & Meng, X. (2015). Quantitative assessment of industrial symbiosis for the promotion of circular economy: a case study of the printed circuit boards industry in China's Suzhou New District. Journal of Cleaner Production, 90, 211-219. Wen, Z., Hu, Y., Lee, J. C. K., Luo, E., Li, H., & Ke, S. (2018). Approaches and policies for promoting industrial park recycling transformation (IPRT) in China: Practices and lessons. Journal of Cleaner Production, 172, 1370- 1380. Wijesekera, N. S., Kamaladasa, M. B., & Nanayakkara, M. A. (2020). Study on sustainable water resource management for drinking purposes. Sri Lanka: University of Moratuwa. World Health Organisation - WHO. (1993). World Health Organisation Meeting on the International Classification of Impairments, Disabilities and Handicaps, 7-10 December, Pan American Health Organisation Headquarters, Washington, DC: (No. SES/ICIDH/93.35. Unpublished). World Health Organisation. Wreyford, J. M., Dykstra, J. E., Wetser, K., Bruning, H., & Rijnaarts, H. H. M. (2020). Modelling framework for desalination treatment train comparison applied to brackish water sources. Desalination, 494, 114632. Yang, L. & Grossmann, I.E. (2013). Water targeting models for simultaneous flowsheet optimisation. Industrial and Engineering Chemistry Research. 52, 3209-24. Yang, Y., Pignatello, J. J., Ma, J., & Mitch, W. A. (2016). Effect of matrix components on UV/H2O2 and UV/S2O82− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities. Water Research, 89, 192-200. Yin, R. K. (2011). Applications of case study research. USA: Sage. Yin, R.K. (2003). Case study research design and methods. (3rd ed.). USA: Sage. Yin, R.K. (2009). Case study research design and methods. (4th ed.). USA: Sage. 194 Yu, C., Davis, C., & Dijkema, G. P. (2014). Understanding the evolution of industrial symbiosis research: A bibliometric and network analysis (1997–2012). Journal of Industrial Ecology, 18(2), 280-293. Yuan, Z., Bi, J. and Moriguichi, Y. (2006). The circular economy: A new development strategy in China. Journal of Industrial Ecology, 10(1‐2), 4-8. ZDHC Roadmap to Zero Programme. (July 2019). ZDHC Wastewater Guidelines Version 1.1. ZDHC Foundation: Netherland. Zhang, L., Yuan, Z., Bi, J., Zhang, B., & Liu, B. (2010). Eco-industrial parks: National pilot practices in China. Journal of Cleaner Production, 18(5), 504-509. Zhang, R., Zhang, G., Zheng, Q., Tang, J., Chen, Y., Xu, W., ... & Chen, X. (2012). Occurrence and risks of antibiotics in the Laizhou Bay, China: Impacts of river discharge. Ecotoxicology and Environmental Safety, 80, 208-215. Zhang, X., & Chai, L. (2019). Structural features and evolutionary mechanisms of industrial symbiosis networks: Comparable analyses of two different cases. Journal of Cleaner Production, 213, 528-539. Zhang, Y., Duan, S., Li, J., Shao, S., Wang, W., & Zhang, S. (2017). Life cycle assessment of industrial symbiosis in Songmudao chemical industrial park, Dalian, China. Journal of Cleaner Production, 158, 192-199. Zhang, Y., Zheng, H., Chen, B., Su, M. and Liu, G., (2015). A review of industrial symbiosis research: Theory and methodology. Frontiers of Earth Science, 9(1), 91-104. Zhang, Y., Zheng, H., Shi, H., Yu, X., Liu, G., Su, M., ... & Chai, Y. (2016). Network analysis of eight industrial symbiosis systems. Frontiers of Earth Science, 10(2), 352-365. Zhao, D., Hubacek, K., Feng, K., Sun, L., & Liu, J. (2019). Explaining virtual water trade: A spatial-temporal analysis of the comparative advantage of land, labor and water in China. Water Research, 153, 304-314. Zheng, B., Huang, G., Liu, L., Zhai, M., & Guan, Y. (2019). Metabolism of urban wastewater: Ecological network analysis for Guangdong Province, China. Journal of Cleaner Production, 217, 510-519. Zhu, Q., Lowe, E. A., Wei, Y. A., & Barnes, D. (2007). Industrial symbiosis in China: a case study of the Guitang Group. Journal of Industrial Ecology, 11(1), 31- 42. 195 Zou, D., & Cong, H. (2021). Evaluation and influencing factors of China’s industrial water resource utilisation efficiency from the perspective of spatial effect. Alexandria Engineering Journal, 60(1), 173-182.