REFERENCES [1] P. Wanninayake, M. Rathnayake, D. Thushara, and S. Gunawardena, “Conversion of rice straw into 5-hydroxymethylfurfural: review and comparative process evaluation,” J Biomass Conv. Bioref., 2021. [Online]. Available: https://link.springer.com/article/10.1007/s13399-021-01351-x [2] P. Wanninayake, M. Rathnayake, D. Thushara, and S. Gunawardena, “Optimiza- tion of hemicellulose recovery from rice straw for biorefinery: Dilute acid pre- treatment at reduced temperatures,” in 2021 Moratuwa Engineering Research Conference (MERCon), 2021, pp. 315–320. [3] L. Atanda, “Catalytic conversion of biorenewable-carbohydrate sources to 5-hydroxymethylfurfural: a platform molecule for future chemical and energy,” Ph.D. dissertation, Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Australia, 7 2016. [Online]. Available: https://espace.library.uq.edu.au/view/UQ:395187 [4] IEA, “Key world energy statistics 2019,” 2019. [Online]. Available: https://www.iea.org/reports/key-world-energy-statistics-2019 [5] F. Isikgor and R. Becer, “Lignocellulosic biomass: A sustainable platform for production of bio-based chemicals and polymers,” Polym. Chem., vol. 6, 05 2015. [6] J. M. Howard, “Catalytic conversion of sugar manufacturing by-products to 5-(chloromethyl) furfural and 5-(hydroxymethyl) furural,” Ph.D. dissertation, Queensland University of Technology, 2017. [Online]. Available: 10.5204/ thesis.eprints.107143 [7] J. K. Saini, R. Gupta, Hemansi, A. Verma, P. Gaur, R. Saini, R. Shukla, and R. C. Kuhad, Integrated Lignocellulosic Biorefinery for Sustainable Bio-Based Economy. Cham: Springer International Publishing, 2019, pp. 25–46. [Online]. Available: https://doi.org/10.1007/978-3-319-94797-6-2 [8] K. I. Galkin and V. P. Ananikov, “When will 5-hydroxymethylfurfural, the “sleeping giant” of sustainable chemistry, awaken?” ChemSusChem, vol. 12, no. 13, pp. 2976–2982, 2019. [Online]. Available: https: //onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201900592 [9] A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, and C. A. M. Afonso, “5-hydroxymethylfurfural (hmf) as a building block platform: Biological 92 properties, synthesis and synthetic applications,” Green Chem., vol. 13, pp. 754–793, 2011. [Online]. Available: http://dx.doi.org/10.1039/C0GC00401D [10] T. Wang, M. W. Nolte, and B. H. Shanks, “Catalytic dehydration of c6 carbohydrates for the production of hydroxymethylfurfural (hmf) as a versatile platform chemical,” Green Chem., vol. 16, pp. 548–572, 2014. [Online]. Available: http://dx.doi.org/10.1039/C3GC41365A [11] M. J. Climent, A. Corma, and S. Iborra, “Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels,” Green Chem., vol. 16, pp. 516–547, 2014. [Online]. Available: http: //dx.doi.org/10.1039/C3GC41492B [12] H. Wang, C. Zhu, D. Li, Q. Liu, J. Tan, C. Wang, C. Cai, and L. Ma, “Recent advances in catalytic conversion of biomass to 5- hydroxymethylfurfural and 2, 5-dimethylfuran,” Renewable and Sustainable Energy Reviews, vol. 103, pp. 227 – 247, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032118308050 [13] X. Li, R. Xu, J. Yang, S. Nie, D. Liu, Y. Liu, and C. Si, “Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation,” Industrial Crops and Products, vol. 130, pp. 184 – 197, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0926669018311440 [14] J. Artz and R. Palkovits, “Cellulose-based platform chemical: The path to application,” Current Opinion in Green and Sustainable Chemistry, vol. 14, pp. 14 – 18, 2018, bioresources and Biochemicals / Biofuels and Bioenergy. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S2452223618300439 [15] O. Abdulmalik, M. K. Safo, Q. Chen, J. Yang, C. Brugnara, K. Ohene- Frempong, D. J. Abraham, and T. Asakura, “5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells†,‡,” British Journal of Haematology, vol. 128, no. 4, pp. 552–561, 2005. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j. 1365-2141.2004.05332.x [16] F. Menegazzo, E. Ghedini, and M. Signoretto, “5-hydroxymethylfurfural (hmf) production from real biomasses,” Molecules, vol. 23, no. 9, 2018. [Online]. Available: https://www.mdpi.com/1420-3049/23/9/2201 [17] G. P. Perez, A. Mukherjee, and M.-J. Dumont, “Insights into hmf catalysis,” Journal of Industrial and Engineering Chemistry, vol. 70, pp. 1 – 34, 93 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S1226086X18308773 [18] A. H. Motagamwala, K. Huang, C. T. Maravelias, and J. A. Dumesic, “Solvent system for effective near-term production of hydroxymethylfurfural (hmf) with potential for long-term process improvement,” Energy Environ. Sci., vol. 12, pp. 2212–2222, 2019. [Online]. Available: http://dx.doi.org/10.1039/C9EE00447E [19] A. Ray, “Straw Based Biorefinery,” Archive of organic and inorganic chemical sciences, vol. 2, no. 5, pp. 249–255, 4 2018. [Online]. Available: https://ideas.repec.org/a/abr/oaoics/v2y2018i5p249-255.html [20] A. Abraham, A. K. Mathew, R. Sindhu, A. Pandey, and P. Binod, “Potential of rice straw for bio-refining: An overview,” Bioresource Technology, vol. 215, pp. 29 – 36, 2016, waste Biorefinery - Advocating Circular Economy. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0960852416304837 [21] Y.-F. Huang and S.-L. Lo, “19 - utilization of rice hull and straw,” in Rice (Fourth Edition), fourth edition ed., J. Bao, Ed. AACC International Press, 2019, pp. 627 – 661. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/B9780128115084000198 [22] M. Rathnayake, T. Chaireongsirikul, A. Svangariyaskul, L. Lawtrakul, and P. Toochinda, “Process simulation based life cycle assessment for bioethanol production from cassava, cane molasses, and rice straw,” Journal of Cleaner Production, vol. 190, pp. 24 – 35, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S095965261831179X [23] C. V. Nguyen, D. Lewis, W.-H. Chen, H.-W. Huang, Z. A. ALOthman, Y. Yamauchi, and K. C.-W. Wu, “Combined treatments for producing 5-hydroxymethylfurfural (hmf) from lignocellulosic biomass,” Catalysis Today, vol. 278, pp. 344 – 349, 2016, novel materials for catalysis. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0920586116301912 [24] P. Binod, R. Sindhu, R. R. Singhania, S. Vikram, L. Devi, S. Nagalakshmi, N. Kurien, R. K. Sukumaran, and A. Pandey, “Bioethanol production from rice straw: An overview,” Bioresource Technology, vol. 101, no. 13, pp. 4767 – 4774, 2010, special Issue on Lignocellulosic Bioethanol: Current Status and Perspectives. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0960852409014862 94 [25] Food and A. O. of the United Nations (FAO STAT), “Paddy (rice) production in 2017,” 2017, data retrieved from FAO STAT, http://www.fao.org/faostat/en/ #data/QC, Filters: Regions Total, Production Quantity, Rice, and 2017. [26] Food and A. O. of the United Nations (FAO STAT), “Paddy (rice) production in 2018,” 2018, data retrieved from FAO STAT, http://www.fao.org/faostat/en/ #data/QC, Filters: Regions Total, Production Quantity, Rice, and 2018. [27] A. Barakat, H. de Vries, and X. Rouau, “Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review,” Bioresource Technology, vol. 134, pp. 362 – 373, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960852413002010 [28] V. B. Agbor, N. Cicek, R. Sparling, A. Berlin, and D. B. Levin, “Biomass pretreatment: Fundamentals toward application,” Biotechnology Advances, vol. 29, no. 6, pp. 675 – 685, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0734975011000607 [29] S. Morais, E. Morag, Y. Barak, D. Goldman, Y. Hadar, R. Lamed, Y. Shoham, D. B. Wilson, and E. A. Bayer, “Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes,” mBio, vol. 3, no. 6, 2012. [30] M. C. Chang, “Harnessing energy from plant biomass,” Current Opinion in Chemical Biology, vol. 11, no. 6, pp. 677 – 684, 2007, model systems/Biopolymers. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S1367593107001202 [31] Y.-H. P. Zhang and L. R. Lynd, “Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems,” Biotechnology and Bioengineering, vol. 88, no. 7, pp. 797–824, 2004. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/bit.20282 [32] J. Houghton, S. Weatherwax, and J. Ferrell, “Breaking the biological barriers to cellulosic ethanol: A joint research agenda,” 6 2006. [33] A. A. Modenbach and S. E. Nokes, “Effects of sodium hydroxide pretreatment on structural components of biomass,” Transactions of the ASABE, vol. 57, no. 4, pp. 1187–1198, 2014. [Online]. Available: https://elibrary.asabe.org/abstract.asp?aid=45059 [34] H. V. Scheller and P. Ulvskov, “Hemicelluloses,” Annual Review of Plant Biology, vol. 61, no. 1, pp. 263–289, 2010, pMID: 20192742. [Online]. Available: https://doi.org/10.1146/annurev-arplant-042809-112315 95 [35] X. Zhao, L. Zhang, and D. Liu, “Biomass recalcitrance. part i: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose,” Biofuels, Bioproducts and Biorefining, vol. 6, no. 4, pp. 465–482, 2012. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10. 1002/bbb.1331 [36] A. U. Buranov and G. Mazza, “Lignin in straw of herbaceous crops,” Industrial Crops and Products, vol. 28, no. 3, pp. 237 – 259, 2008. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0926669008000630 [37] E. M. Rubin, “Genomics of cellulosic biofuels,” Nature Reviews, vol. 454, p. 841–845, 2008. [Online]. Available: https://www.nature.com/articles/ nature07190 [38] A. Kiran Kumar and S. Sharma, “Recent updates on different methods of pre- treatment of lignocellulosic feedstocks: a review,” Bioresources and Biopro- cessing, vol. 4, 12 2017. [39] E. C. Bensah and M. Mensah, “Chemical pretreatment methods for the production of cellulosic ethanol: Technologies and innovations,” International Journal of Chemical Engineering, vol. 2013, 2013. [Online]. Available: https://doi.org/10.1155/2013/719607 [40] H. Chen, J. Liu, X. Chang, D. Chen, Y. Xue, P. Liu, H. Lin, and S. Han, “A review on the pretreatment of lignocellulose for high-value chemicals,” Fuel Processing Technology, vol. 160, pp. 196 – 206, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0378382016311766 [41] E. E. Anthonia and H. S. Philip, “An overview of the applications of furfural and its derivatives,” International Journal of Advanced Chemistry, vol. 3, no. 2, pp. 42–47, 2015. [Online]. Available: https://sciencepubcocom.ipage. com/sciencepubco/index.php/IJAC/article/view/5048 [42] C. M. Cai, T. Zhang, R. Kumar, and C. E. Wyman, “Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass,” Journal of Chemical Technology & Biotechnology, vol. 89, no. 1, pp. 2–10, 2014. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10. 1002/jctb.4168 [43] G. Machado, S. Leon, F. Santos, R. Lourega, J. Dullius, M. Mollmann, and P. Eichler, “Literature review on furfural production from lignocellulosic biomass,” Natural Resources, vol. 07, pp. 115–129, 01 2016. 96 [44] A. S. Mamman, J.-M. Lee, Y.-C. Kim, I. T. Hwang, N.-J. Park, Y. K. Hwang, J.-S. Chang, and J.-S. Hwang, “Furfural: Hemicellulose/xylosederived biochemical,” Biofuels, Bioproducts and Biorefining, vol. 2, no. 5, pp. 438–454, 2008. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/bbb. 95 [45] S. Elumalai, B. Arumugam, P. Kundu, and S. Kumar, “Chapter 18 - phenol derivatives of lignin monomers for aromatic compounds and cycloalkane fuels,” in Biomass, Biofuels, Biochemicals, ser. Biomass, Biofuels, Biochemicals, S. Saravanamurugan, A. Pandey, H. Li, and A. Riisager, Eds. Elsevier, 2020, pp. 459 – 483. [Online]. Available: http://www.sciencedirect.com/science/article/pii/B9780444643070000184 [46] M. S. Karunarathna and R. C. Smith, “Valorization of lignin as a sustainable component of structural materials and composites: Advances from 2011 to 2019,” Sustainability, vol. 12, no. 2, 2020. [Online]. Available: https://www.mdpi.com/2071-1050/12/2/734 [47] M. A. Helle and C. L. Cheung, “Methods of making and using lignin derivatives,” patentus. [Online]. Available: https://patents.google.com/patent/ US10533031B2/en [48] S. Kang, J. Fu, and G. Zhang, “From lignocellulosic biomass to levulinic acid: A review on acid-catalyzed hydrolysis,” Renewable and Sustainable Energy Reviews, vol. 94, pp. 340 – 362, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032118304520 [49] I. K. Yu, D. C. Tsang, A. C. Yip, S. S. Chen, L. Wang, Y. S. Ok, and C. S. Poon, “Catalytic valorization of starch-rich food waste into hydroxymethylfurfural (hmf): Controlling relative kinetics for high productivity,” Bioresource Technology, vol. 237, pp. 222 – 230, 2017, 1st International Conference on Bioresource Technology for Bioenergy, Bioproducts & Environmental Sustainability (BIORESTEC). [Online]. Available: http://www.sciencedirect. com/science/article/pii/S0960852417300378 [50] H. Amiri, K. Karimi, and S. Roodpeyma, “Production of furans from rice straw by single-phase and biphasic systems,” Carbohydrate Research, vol. 345, no. 15, pp. 2133 – 2138, 2010. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0008621510003174 [51] Z. Zhang and Z. K. Zhao, “Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid,” Bioresource Technology, vol. 101, no. 3, 97 pp. 1111 – 1114, 2010. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S096085240901178X [52] Y. Feng, M. Li, Z. Gao, X. Zhang, X. Zeng, Y. Sun, X. Tang, T. Lei, and L. Lin, “Development of betaine-based sustainable catalysts for green conversion of carbohydrates and biomass into 5-hydroxymethylfurfural,” ChemSusChem, vol. 12, no. 2, pp. 495–502, 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201802342 [53] A. Abo-Hamad, M. Hayyan, M. A. AlSaadi, and M. A. Hashim, “Potential applications of deep eutectic solvents in nanotechnology,” Chemical Engineering Journal, vol. 273, pp. 551 – 567, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1385894715004076 [54] R. Agrawal, R. Gaur, A. Mathur, R. Kumar, R. P. Gupta, D. K. Tuli, and A. Satlewal, “Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes,” RSC Adv., vol. 5, pp. 71 462–71 471, 2015. [Online]. Available: http://dx.doi.org/10.1039/C5RA13360B [55] S. Singh, G. Cheng, N. Sathitsuksanoh, D. Wu, P. Varanasi, A. George, V. Balan, X. Gao, R. Kumar, B. E. Dale, C. E. Wyman, and B. A. Simmons, “Comparison of different biomass pretreatment techniques and their impact on chemistry and structure,” Frontiers in Energy Research, vol. 2, p. 62, 2015. [Online]. Available: https://www.frontiersin.org/article/10.3389/fenrg.2014.00062 [56] L. Capolupo and V. Faraco, “Green methods of lignocellulose pretreatment for biorefinery development,” Applied Microbiology and Biotechnology, vol. 100, no. 22, pp. 9451–9467, 11 2016. [Online]. Available: https: //doi.org/10.1007/s00253-016-7884-y [57] W. Den, V. K. Sharma, M. Lee, G. Nadadur, and R. S. Varma, “Lignocellulosic biomass transformations via greener oxidative pretreatment processes: Access to energy and value-added chemicals,” Frontiers in Chemistry, vol. 6, p. 141, 2018. [Online]. Available: https://www.frontiersin.org/article/10.3389/fchem. 2018.00141 [58] P. R. Seidl and A. K. Goulart, “Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts,” Current Opinion in Green and Sustainable Chemistry, vol. 2, pp. 48 – 53, 2016, bioresources, Biomass, Bio-fuels and Bioenergies 2016. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S2452223616300232 98 [59] D. Steinbach, A. Kruse, and J. Sauer, “Pretreatment technologies of lignocellulosic biomass in water in view of furfural and 5- hydroxymethylfurfural production- a review,” Biomass Conversion and Biorefinery, vol. 7, no. 2, pp. 247–274, 6 2017. [Online]. Available: https://doi.org/10.1007/s13399-017-0243-0 [60] V. S. Chang, M. Nagwani, and M. T. Holtzapple, “Lime pretreatment of crop residues bagasse and wheat straw,” Applied Biochemistry and Biotechnology, vol. 74, no. 3, pp. 135–159, 9 1998. [Online]. Available: https://doi.org/10.1007/BF02825962 [61] Y. Liao, Q. Liu, T. Wang, J. Long, L. Ma, and Q. Zhang, “Zirconium phosphate combined with ru/c as a highly efficient catalyst for the direct transformation of cellulose to c6 alditols,” Green Chem., vol. 16, pp. 3305–3312, 2014. [Online]. Available: http://dx.doi.org/10.1039/C3GC42444H [62] F. Boissou, N. Sayoud, K. De Oliveira Vigier, A. Barakat, S. Marinkovic, B. Estrine, and F. Jerome, “Acid-assisted ball milling of cellulose as an efficient pretreatment process for the production of butyl glycosides,” ChemSusChem, vol. 8, no. 19, pp. 3263–3269, 2015. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201500700 [63] S. Nemoto, T. Ueno, A. Watthanaphanit, J. Hieda, and N. Saito, “Crystallinity and surface state of cellulose in wet ball-milling process,” Journal of Applied Polymer Science, vol. 134, no. 22, 2017. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/app.44903 [64] A. S. da Silva, H. Inoue, T. Endo, S. Yano, and E. P. Bon, “Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation,” Bioresource Technology, vol. 101, no. 19, pp. 7402 – 7409, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0960852410008199 [65] H. Kim, J. Chang, B.-Y. Jeong, and J. Lee, “Comparison of milling modes as a pretreatment method for cellulosic biofuel production,” Journal of Clean Energy Technologies, vol. 1, pp. 45–48, 01 2013. [66] X. Qi, L. Yan, F. Shen, and M. Qiu, “Mechanochemical-assisted hydrolysis of pretreated rice straw into glucose and xylose in water by weakly acidic solid catalyst,” Bioresource Technology, vol. 273, pp. 687 – 691, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0960852418315311 99 [67] T. Qu, X. Zhang, X. Gu, L. Han, G. Ji, X. Chen, and W. Xiao, “Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions,” ACS Sustainable Chemistry & Engineering, vol. 5, no. 9, pp. 7733–7742, 2017. [Online]. Available: https://doi.org/10.1021/acssuschemeng.7b01186 [68] S. S. Hassan, G. A. Williams, and A. K. Jaiswal, “Emerging technologies for the pretreatment of lignocellulosic biomass,” Bioresource Technology, vol. 262, pp. 310 – 318, 2018. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S0960852418306229 [69] Z.-Y. Xiong, Y.-H. Qin, J.-Y. Ma, L. Yang, Z.-K. Wu, T.-L. Wang, W.-G. Wang, and C.-W. Wang, “Pretreatment of rice straw by ultrasound- assisted fenton process,” Bioresource Technology, vol. 227, pp. 408 – 411, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0960852416317837 [70] E. Shirkavand, S. Baroutian, D. J. Gapes, and B. R. Young, “Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – a review,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 217 – 234, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S1364032115010783 [71] M. Bussemaker and D. Zhang, “Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications,” INDUSTRIAL & EN- GINEERING CHEMISTRY RESEARCH, vol. 52, no. 10, p. 3563–3580, 2013. [72] M. Saif Ur Rehman, I. Kim, Y. Chisti, and J.-I. Han, “Use of ultrasound in the production of bioethanol from lignocellulosic biomass,” Energy, Education, Science and Technology, vol. 30, pp. 1391–1410, 01 2013. [73] P. R. Gogate, V. S. Sutkar, and A. B. Pandit, “Sonochemical reactors: Important design and scale up considerations with a special emphasis on heterogeneous systems,” Chemical Engineering Journal, vol. 166, no. 3, pp. 1066 – 1082, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S1385894710011654 [74] H. Wu, X. Dai, S.-L. Zhou, Y.-Y. Gan, Z.-Y. Xiong, Y.-H. Qin, J. Ma, L. Yang, Z.-K. Wu, T.-L. Wang, W.-G. Wang, and C.-W. Wang, “Ultrasound- assisted alkaline pretreatment for enhancing the enzymatic hydrolysis of rice straw by using the heat energy dissipated from ultrasonication,” Bioresource Technology, vol. 241, pp. 70 – 74, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960852417307459 100 [75] N. Dinh Vu, H. Thi Tran, N. D. Bui, C. Duc Vu, and H. Viet Nguyen, “Lignin and cellulose extraction from vietnam’s rice straw using ultrasound-assisted alkaline treatment method,” International Journal of Polymer Science, vol. 2017, p. 1063695, 2017. [Online]. Available: https://doi.org/10.1155/2017/ 1063695 [76] A. A. Issa, Y. S. Al-Degs, K. Mashal, and R. Z. A. Bakain, “Fast activation of natural biomasses by microwave heating,” Journal of Industrial and Engineering Chemistry, vol. 21, pp. 230 – 238, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1226086X14001142 [77] L. Dai, C. He, Y. Wang, Y. Liu, Z. Yu, Y. Zhou, L. Fan, D. Duan, and R. Ruan, “Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: Hydrochar properties and its pyrolysis behaviors,” Energy Conversion and Management, vol. 146, pp. 1 – 7, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0196890417304363 [78] S. Irmak, B. Meryemoglu, A. Sandip, J. Subbiah, R. B. Mitchell, and G. Sarath, “Microwave pretreatment effects on switchgrass and miscanthus solubilization in subcritical water and hydrolysate utilization for hydrogen production,” Biomass and Bioenergy, vol. 108, pp. 48 – 54, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0961953417303550 [79] S. Mafuleka and E. G. Kana, “Modelling and optimization of xylose and glucose production from napier grass using hybrid pre-treatment techniques,” Biomass and Bioenergy, vol. 77, pp. 200 – 208, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0961953415001208 [80] Z. Hu and Z. Wen, “Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment,” Biochemical Engineering Journal, vol. 38, no. 3, pp. 369 – 378, 2008. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S1369703X07002756 [81] P. Binod, K. Satyanagalakshmi, R. Sindhu, K. U. Janu, R. K. Sukumaran, and A. Pandey, “Short duration microwave assisted pretreatment enhances the en- zymatic saccharification and fermentable sugar yield from sugarcane bagasse,” Renewable Energy, vol. 37, no. 1, pp. 109 – 116, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960148111002990 [82] D. R. Keshwani and J. J. Cheng, “Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production,” Biotech- nology Progress, vol. 26, no. 3, pp. 644–652, 2010. [Online]. Available: https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/btpr.371 101 [83] V. Sorn, K.-L. Chang, P. Phitsuwan, K. Ratanakhanokchai, and C.-D. Dong, “Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw,” Bioresource Technology, vol. 293, p. 121929, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960852419311599 [84] P. Alvira, E. Tomás-Pejó, M. Ballesteros, and M. Negro, “Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review,” Bioresource Technology, vol. 101, no. 13, pp. 4851 – 4861, 2010, special Issue on Lignocellulosic Bioethanol: Current Status and Perspectives. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0960852409015983 [85] E. Ximenes, C. S. Farinas, Y. Kim, and M. R. Ladisch, Hydrothermal Pretreatment of Lignocellulosic Biomass for Bioethanol Production. Cham: Springer International Publishing, 2017, pp. 181–205. [Online]. Available: https://doi.org/10.1007/978-3-319-56457-9_7 [86] Y. W. Bandara, P. Gamage, and D. S. Gunarathne, “Hot water washing of rice husk for ash removal: The effect of washing temperature, washing time and particle size,” Renewable Energy, vol. 153, pp. 646 – 652, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S096014812030224X [87] D. G. Mulat, S. G. Huerta, D. Kalyani, and S. J. Horn, “Enhancing methane production from lignocellulosic biomass by combined steam- explosion pretreatment and bioaugmentation with cellulolytic bacterium caldicellulosiruptor bescii,” Biotechnology for Biofuels, vol. 11, no. 1, p. 19, 2018. [Online]. Available: https://doi.org/10.1186/s13068-018-1025-z [88] M. Moniruzzaman, “Effect of steam explosion on the physicochemical properties and enzymatic saccharification of rice straw,” Applied Biochemistry and Biotechnology, vol. 59, no. 3, pp. 283–297, 6 1996. [Online]. Available: https://doi.org/10.1007/BF02783570 [89] W. Schwald, C. Breuil, H. H. Brownell, M. Chan, and J. M. Saddler, “Assessment of pretreatment conditions to obtain fast complete hydrolysis on high substrate concentrations,” Applied Biochemistry and Biotechnology, vol. 20, no. 1, p. 29, 1 1989. [Online]. Available: https://doi.org/10.1007/ BF02936471 [90] X. Zhao, L. Zhang, and D. Liu, “Biomass recalcitrance. part ii: Fundamentals of different pre-treatments to increase the enzymatic digestibility of 102 lignocellulose,” Biofuels, Bioproducts and Biorefining, vol. 6, no. 5, pp. 561–579, 2012. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10. 1002/bbb.1350 [91] S. Sharma, R. Kumar, R. Gaur, R. Agrawal, R. P. Gupta, D. K. Tuli, and B. Das, “Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw,” Bioresource Technology, vol. 175, pp. 350 – 357, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0960852414015442 [92] W.-H. Chen, C.-C. Tsai, C.-F. Lin, P.-Y. Tsai, and W.-S. Hwang, “Pilot-scale study on the acid-catalyzed steam explosion of rice straw using a continuous pretreatment system,” Bioresource Technology, vol. 128, pp. 297 – 304, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0960852412016203 [93] S. Semwal, T. Raj, R. Kumar, J. Christopher, R. P. Gupta, S. K. Puri, R. Kumar, and S. Ramakumar, “Process optimization and mass balance studies of pilot scale steam explosion pretreatment of rice straw for higher sugar release,” Biomass and Bioenergy, vol. 130, p. 105390, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0961953419303393 [94] L. Matsakas, O. Sarkar, S. Jansson, U. Rova, and P. Christakopoulos, “A novel hybrid organosolv-steam explosion pretreatment and fractionation method delivers solids with superior thermophilic digestibility to methane,” Bioresource Technology, vol. 316, p. 123973, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960852420312451 [95] F. S. Asghari and H. Yoshida, “Dehydration of fructose to 5- hydroxymethylfurfural in sub-critical water over heterogeneous zirconium phosphate catalysts,” Carbohydrate Research, vol. 341, no. 14, pp. 2379 – 2387, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0008621506003363 [96] Z. Wang, M.-Q. Zhu, M.-F. Li, J.-Q. Wang, Q. Wei, and R.-C. Sun, “Compre- hensive evaluation of the liquid fraction during the hydrothermal treatment of rapeseed straw,” Biotechnology for Biofuels, vol. 9, 12 2016. [97] A. Sato, S. Soeprijanto, and A. Widjaja, “Influence of alkaline hydrothermal pretreatment of rice straw on biomass composition,” International Energy Jour- nal, vol. 19, pp. 115–124, 6 2019. [98] L. M. Schmidt, L. D. Mthembu, P. Reddy, N. Deenadayalu, M. Kaltschmitt, and I. Smirnova, “Levulinic acid production integrated into a sugarcane 103 bagasse based biorefinery using thermal-enzymatic pretreatment,” Industrial Crops and Products, vol. 99, pp. 172 – 178, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0926669017301000 [99] S. Imman, J. Arnthong, V. Burapatana, V. Champreda, and N. Laosiripojana, “Influence of alkaline catalyst addition on compressed liquid hot water pretreatment of rice straw,” Chemical Engineering Journal, vol. 278, pp. 85 – 91, 2015, tailoring Sustainability through Chemical Reaction Engineering. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S1385894714016428 [100] T. Oomori, S. H. Khajavi, Y. Kimura, S. Adachi, and R. Matsuno, “Hydrolysis of disaccharides containing glucose residue in subcritical water,” Biochemical Engineering Journal, vol. 18, no. 2, pp. 143 – 147, 2004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1369703X03002018 [101] N. Syaftika and Y. Matsumura, “Comparative study of hydrothermal pretreatment for rice straw and its corresponding mixture of cellulose, xylan, and lignin,” Bioresource Technology, vol. 255, pp. 1 – 6, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0960852418300993 [102] S. Behera, R. Arora, N. Nandhagopal, and S. Kumar, “Importance of chemical pretreatment for bioconversion of lignocellulosic biomass,” Renewable and Sustainable Energy Reviews, vol. 36, pp. 91 – 106, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032114002743 [103] S. Arora, N. Gupta, and V. Singh, “Choline based basic ionic liquid (bil)/acidic des mediated cellulose rich fractionation of agricultural waste biomass and valorization to 5-hmf,” Waste and Biomass Valorization, 4 2019. [Online]. Available: https://doi.org/10.1007/s12649-019-00603-2 [104] A. Moreno, E. Tomás-Pejó, M. Ballesteros, and M. Negro, “Chapter 16 - pretreatment technologies for lignocellulosic biomass deconstruction within a biorefinery perspective,” in Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition), second edition ed., ser. Biomass, Biofuels, Biochemicals, A. Pandey, C. Larroche, C.-G. Dussap, E. Gnansounou, S. K. Khanal, and S. Ricke, Eds. Academic Press, 2019, pp. 379 – 399. [Online]. Available: http://www.sciencedirect.com/science/article/pii/B9780128168561000166 [105] L. M. L. Laurens, N. Nagle, R. Davis, N. Sweeney, S. Van Wychen, A. Lowell, and P. T. Pienkos, “Acid-catalyzed algal biomass pretreatment for integrated 104 lipid and carbohydrate-based biofuels production,” Green Chem., vol. 17, pp. 1145–1158, 2015. [Online]. Available: http://dx.doi.org/10.1039/C4GC01612B [106] M. Kapoor, S. Soam, R. Agrawal, R. P. Gupta, D. K. Tuli, and R. Kumar, “Pilot scale dilute acid pretreatment of rice straw and fermentable sugar recovery at high solid loadings,” Bioresource Technology, vol. 224, pp. 688 – 693, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0960852416315371 [107] S. Singh, D. Kaur, S. K. Yadav, and M. Krishania, “Process scale-up of an efficient acid-catalyzed steam pretreatment of rice straw for xylitol production by c. tropicalis mtcc 6192,” Bioresource Technology, vol. 320, p. 124422, 2021. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0960852420316965 [108] S. B. Kim, S. J. Lee, E. J. Jang, S. O. Han, C. Park, and S. W. Kim, “Sugar recovery from rice straw by dilute acid pretreatment,” Journal of Industrial and Engineering Chemistry, vol. 18, no. 1, pp. 183 – 187, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1226086X11002012 [109] Z. Chen, A. Ragauskas, and C. Wan, “Lignin extraction and upgrading using deep eutectic solvents,” Industrial Crops and Products, vol. 147, p. 112241, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0926669020301576 [110] F. Hu, S. Jung, and A. Ragauskas, “Pseudo-lignin formation and its impact on enzymatic hydrolysis,” Bioresource Technology, vol. 117, pp. 7 – 12, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0960852412006426 [111] S. Souzanchi, L. Nazari, K. T. V. Rao, Z. Yuan, Z. Tan, and C. C. Xu, “Catalytic isomerization of glucose to fructose using heterogeneous solid base catalysts in a continuous-flow tubular reactor: Catalyst screening study,” Catalysis Today, vol. 319, pp. 76 – 83, 2019, sI: Biomass Valorization. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0920586118303250 [112] R. O. Souza, D. P. Fabiano, C. Feche, F. Rataboul, D. Cardoso, and N. Essayem, “Glucose-fructose isomerisation promoted by basic hybrid catalysts,” Catalysis Today, vol. 195, no. 1, pp. 114 – 119, 2012, catalysis for Biorefineries. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0920586112004129 [113] Q. Zhang, Y. Deng, X. Tan, W. Wang, Q. Yu, X. Chen, C. Miao, Y. Guo, Y. Zhang, X. Zhuang, and Z. Yuan, “Biphasic fractionation of 105 rice straw under mild condition in acidified 2-phenoxyethanol/water system,” Industrial Crops and Products, vol. 145, p. 112091, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0926669020300078 [114] L. Dong, X. Wu, Q. Wang, G. Cao, J. Wu, C. Zhou, and N. Ren, “Evaluation of a novel pretreatment of naoh/urea at outdoor cold-winter conditions for enhanced enzymatic conversion and hythane production from rice straw,” Science of The Total Environment, vol. 744, p. 140900, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0048969720344296 [115] J. Wu, L. Dong, B. Liu, D. Xing, C. Zhou, Q. Wang, X. Wu, L. Feng, and G. Cao, “A novel integrated process to convert cellulose and hemicellulose in rice straw to biobutanol,” Environmental Research, vol. 186, p. 109580, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0013935120304734 [116] S. De, S. Mishra, E. Poonguzhali, M. Rajesh, and K. Tamilarasan, “Fractionation and characterization of lignin from waste rice straw: Biomass surface chemical composition analysis,” International Journal of Biological Macromolecules, vol. 145, pp. 795 – 803, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0141813019372253 [117] N. Poornejad, K. Karimi, and T. Behzad, “Improvement of saccharification and ethanol production from rice straw by nmmo and [bmim][oac] pretreatments,” Industrial Crops and Products, vol. 41, pp. 408 – 413, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0926669012002658 [118] O. A. El Seoud, A. Koschella, L. C. Fidale, S. Dorn, and T. Heinze, “Applications of ionic liquids in carbohydrate chemistry: A window of opportunities,” Biomacromolecules, vol. 8, no. 9, pp. 2629–2647, 2007. [Online]. Available: https://doi.org/10.1021/bm070062i [119] J. Luo, M. Cai, and T. Gu, Pretreatment of Lignocellulosic Biomass Using Green Ionic Liquids. Dordrecht: Springer Netherlands, 2013, pp. 127–153. [Online]. Available: https://doi.org/10.1007/978-94-007-6052-3_6 [120] E. M. Aung, T. Endo, S. Fujii, K. Kuroda, K. Ninomiya, and K. Takahashi, “Efficient pretreatment of bagasse at high loading in an ionic liquid,” Industrial Crops and Products, vol. 119, pp. 243 – 248, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0926669018303078 [121] S. Wang, J. Chen, G. Yang, W. Gao, and K. Chen, “Efficient conversion of hubrid pennisetum to glucose by oxygen-aqueous alkaline ionic liquid media 106 pretreatment under benign conditions,” Bioresource Technology, vol. 243, pp. 335 – 338, 2017. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0960852417310386 [122] A. George, A. Brandt, K. Tran, S. M. S. N. S. Zahari, D. Klein-Marcuschamer, N. Sun, N. Sathitsuksanoh, J. Shi, V. Stavila, R. Parthasarathi, S. Singh, B. M. Holmes, T. Welton, B. A. Simmons, and J. P. Hallett, “Design of low-cost ionic liquids for lignocellulosic biomass pretreatment,” Green Chem., vol. 17, pp. 1728–1734, 2015. [Online]. Available: http://dx.doi.org/10.1039/C4GC01208A [123] B. Karimi and H. M. Mirzaei, “The influence of hydrophobic/hydrophilic balance of the mesoporous solid acid catalysts in the selective dehydration of fructose into hmf,” RSC Adv., vol. 3, pp. 20 655–20 661, 2013. [Online]. Available: http://dx.doi.org/10.1039/C3RA44214D [124] S. Kahani, M. Shafiei, A. Abdolmaleki, and K. Karimi, “Enhancement of ethanol production by novel morpholinium ionic liquids,” Journal of Cleaner Production, vol. 168, pp. 952 – 962, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0959652617319959 [125] M. Mohammadi, M. Shafiei, A. Abdolmaleki, K. Karimi, J.-P. Mikkola, and C. Larsson, “A morpholinium ionic liquid for rice straw pretreatment to enhance ethanol production,” Industrial Crops and Products, vol. 139, p. 111494, 2019. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0926669019305060 [126] C. L. Chambon, M. Chen, P. S. Fennell, and J. P. Hallett, “Efficient fractionation of lignin- and ash-rich agricultural residues following treatment with a low-cost protic ionic liquid,” Frontiers in Chemistry, vol. 7, p. 246, 2019. [Online]. Available: https://www.frontiersin.org/article/10.3389/fchem.2019.00246 [127] P. Suwannabun, K. Cheenkachorn, M. Prongjit, A. Tawai, and M. Sriariyanun, “Pretreatment of rice straw by inorganic salts and 1-ethyl-3-methylimdazolium acetate for biofuel production,” in 2019 2nd Asia Conference on Energy and Environment Engineering (ACEEE), 2019, pp. 12–15. [128] L. T. P. Trinh, Y.-J. Lee, C. S. Park, and H.-J. Bae, “Aqueous acidified ionic liquid pretreatment for bioethanol production and concentration of produced ethanol by pervaporation,” Journal of Industrial and Engineering Chemistry, vol. 69, pp. 57 – 65, 2019. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S1226086X18306270 [129] J. Gao, S. Xin, L. Wang, Y. Lei, H. Ji, and S. Liu, “Effect of ionic liquid/inorganic salt/water pretreatment on the composition, structure and 107 enzymatic hydrolysis of rice straw,” Bioresource Technology Reports, vol. 5, pp. 355 – 358, 2019. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S2589014X18300392 [130] C.-Y. Yang and T. J. Fang, “Combination of ultrasonic irradiation with ionic liquid pretreatment for enzymatic hydrolysis of rice straw,” Bioresource Technology, vol. 164, pp. 198 – 202, 2014. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0960852414006634 [131] A. Boonsombuti, O. Trisinsub, and A. Luengnaruemitchai, “Comparative study of three chemical pretreatments and their effects on the structural changes of rice straw and butanol production,” Waste and Biomass Valorization, vol. 11, pp. 2771–2781, 2020. [Online]. Available: https: //doi.org/10.1007/s12649-019-00622-z [132] W. Zhang, J. Liu, Y. Wang, J. Sun, P. Huang, and K. Chang, “Effect of ultrasound on ionic liquid-hydrochloric acid pretreatment with rice straw,” Biomass Conversion and Biorefinery, 2020. [Online]. Available: https://doi.org/10.1007/s13399-019-00595-y [133] K.-L. Chang, X.-M. Chen, X.-Q. Wang, Y.-J. Han, L. Potprommanee, J. yong Liu, Y.-L. Liao, X. an Ning, S. yu Sun, and Q. Huang, “Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw,” Bioresource Technology, vol. 227, pp. 388 – 392, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960852416316066 [134] Y.-Y. Hong, Y.-T. Wang, S.-M. Zhu, X.-C. Luo, S. Li, M. Zhuo, T. Zhou, and M.-J. Zhu, “Improved enzymatic hydrolysis and ethanol production by combined alkaline peroxide and ionic liquid-water mixtures pretreatment of rice straw,” Journal of Chemical Technology & Biotechnology, vol. 94, no. 5, pp. 1451–1459, 2019. [Online]. Available: https: //onlinelibrary.wiley.com/doi/abs/10.1002/jctb.5895 [135] N. Akhtar, K. Gupta, D. Goyal, and A. Goyal, “Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass,” Environmental Progress & Sustainable Energy, vol. 35, no. 2, pp. 489–511, 2016. [Online]. Available: https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/ep.12257 [136] Q. Yu, R. Liu, K. Li, and R. Ma, “A review of crop straw pretreatment methods for biogas production by anaerobic digestion in china,” Renewable and Sustainable Energy Reviews, vol. 107, pp. 51 – 58, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032119301133 108 [137] Anu, A. Kumar, K. K. Jain, and B. Singh, “Process optimization for chemical pretreatment of rice straw for bioethanol production,” Renewable Energy, vol. 156, pp. 1233 – 1243, 2020. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S096014812030584X [138] A. Kaur and R. C. Kuhad, “Valorization of rice straw for ethanol production and lignin recovery using combined acid-alkali pre-treatment,” BioEnergy Research, vol. 12, no. 3, pp. 570–582, 9 2019. [Online]. Available: https://doi.org/10.1007/s12155-019-09988-3 [139] M. Pan, G. Zhao, C. Ding, B. Wu, Z. Lian, and H. Lian, “Physicochemical transformation of rice straw after pretreatment with a deep eutectic solvent of choline chloride/urea,” Carbohydrate Polymers, vol. 176, pp. 307 – 314, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0144861717309645 [140] X. Ge, C. Chang, L. Zhang, S. Cui, X. Luo, S. Hu, Y. Qin, and Y. Li, “Chapter five - conversion of lignocellulosic biomass into platform chemicals for biobased polyurethane application,” in Advances in Bioenergy, ser. Advances in Bioenergy, Y. Li and X. Ge, Eds. Elsevier, 2018, vol. 3, pp. 161 – 213. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S2468012518300051 [141] L. T. Mika, E. Csefalvay, and A. Nemeth, “Catalytic conversion of carbohydrates to initial platform chemicals: Chemistry and sustainability,” Chemical Reviews, vol. 118, no. 2, pp. 505–613, 2018, pMID: 29155579. [Online]. Available: https://doi.org/10.1021/acs.chemrev.7b00395 [142] A. Rusanen, R. Lahti, K. Lappalainen, J. Kärkkäinen, T. Hu, H. Romar, and U. Lassi, “Catalytic conversion of glucose to 5- hydroxymethylfurfural over biomass-based activated carbon catalyst,” Catalysis Today, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0920586118313245 [143] A. Hideno, H. Inoue, K. Tsukahara, S. Fujimoto, T. Minowa, S. Inoue, T. Endo, and S. Sawayama, “Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw,” Bioresource Technology, vol. 100, no. 10, pp. 2706 – 2711, 2009. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0960852408011371 [144] J. Zhou, B. H. Yan, Y. Wang, X. Y. Yong, Z. H. Yang, H. H. Jia, M. Jiang, and P. Wei, “Effect of steam explosion pretreatment on the anaerobic digestion 109 of rice straw,” RSC Adv., vol. 6, pp. 88 417–88 425, 2016. [Online]. Available: http://dx.doi.org/10.1039/C6RA15330E [145] I. Wood, C. Giang, L. Tran, N. Cook, P. Ryden, D. Wilson, G. Moates, S. Collins, A. Elliston, and K. Waldron, “Comparison of saccharification and fermentation of steam exploded rice straw and rice husk,” Biotechnology for Biofuels, vol. 9, 12 2016. [146] T. Pielhop, J. Amgarten, P. R. von Rohr, and M. H.-P. Studer, “Steam explo- sion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility,” in Biotechnology for Biofuels, 2016. [147] Y. Bin and C. Hongzhang, “Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw,” Bioresource Technology, vol. 101, no. 23, pp. 9114 – 9119, 2010. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S096085241001223X [148] T.-C. Hsu, G.-L. Guo, W.-H. Chen, and W.-S. Hwang, “Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis,” Bioresource Technology, vol. 101, no. 13, pp. 4907 – 4913, 2010, special Issue on Lignocellulosic Bioethanol: Current Status and Perspectives. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0960852409013510 [149] H. Teramura, K. Sasaki, T. Oshima, S. Aikawa, F. Matsuda, M. Okamoto, T. Shirai, H. Kawaguchi, C. Ogino, M. Yamasaki, J. Kikuchi, and A. Kondo, “Changes in lignin and polysaccharide components in 13 cultivars of rice straw following dilute acid pretreatment as studied by solution-state 2d 1h-13c nmr,” PloS one, vol. 10, p. e0128417, 06 2015. [150] S. Sun, W. Chen, J. Tang, B. Wang, X. Cao, S. Sun, and R.-C. Sun, “Syner- getic effect of dilute acid and alkali treatments on fractional application of rice straw,” Biotechnology for Biofuels, vol. 9, no. 1, pp. 1–13, 10 2016, electronic supplementary material The online version of this article (doi: 10.1186/s13068- 016-0632-9 ) contains supplementary material, which is available to authorized users. [151] S. Kshirsagar, P. Waghmare, P. Chandrakant Loni, S. Patil, and S. Govindwar, “Dilute acid pretreatment of rice straw, structural characterization and optimiza- tion of enzymatic hydrolysis conditions by response surface methodology,” RSC Advances, vol. 5, no. 58, pp. 46 525–46 533, 1 2015. [152] X. Meng and A. J. Ragauskas, “Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic 110 substrates,” Current Opinion in Biotechnology, vol. 27, pp. 150 – 158, 2014, energy biotechnology • Environmental biotechnology. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0958166914000275 [153] D. Chen, Y. Wang, Y. Liu, K. Cen, X. Cao, Z. Ma, and Y. Li, “Comparative study on the pyrolysis behaviors of rice straw under different washing pretreatments of water, acid solution, and aqueous phase bio-oil by using tg-ftir and py-gc/ms,” Fuel, vol. 252, pp. 1 – 9, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0016236119306489 [154] M. Chownk, R. S. Sangwan, and S. K. Yadav, “A novel approach to produce glucose from the supernatant obtained upon the dilute acid pre-treatment of rice straw and synergistic action of hydrolytic enzymes producing microbes,” Brazil- ian Journal of Microbiology, vol. 50, no. 2, pp. 395–404, 4 2019. [155] S. Soam, M. Kapoor, R. Kumar, R. P. Gupta, S. K. Puri, and S. Ramakumar, “Life cycle assessment and life cycle costing of conventional and modified dilute acid pretreatment for fuel ethanol production from rice straw in india,” Journal of Cleaner Production, vol. 197, pp. 732 – 741, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0959652618318547 [156] J. Peng, A. E.-F. Abomohra, M. Elsayed, X. Zhang, Q. Fan, and P. Ai, “Compositional changes of rice straw fibers after pretreatment with diluted acetic acid: Towards enhanced biomethane production,” Journal of Cleaner Production, vol. 230, pp. 775 – 782, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0959652619316816 [157] S. Ukaew, J. Schoenborn, B. Klemetsrud, and D. R. Shonnard, “Effects of torrefaction temperature and acid pretreatment on the yield and quality of fast pyrolysis bio-oil from rice straw,” Journal of Analytical and Applied Pyrolysis, vol. 129, pp. 112 – 122, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S016523701730668X [158] T. Chiranjeevi, A. J. Mattam, K. K. Vishwakarma, A. Uma, V. C. R. Peddy, S. Gandham, and H. Ravindra Velankar, “Assisted single-step acid pretreatment process for enhanced delignification of rice straw for bioethanol production,” ACS Sustainable Chemistry & Engineering, vol. 6, no. 7, pp. 8762–8774, 2018. [Online]. Available: https://doi.org/10.1021/acssuschemeng.8b01113 [159] W.-H. Chen, B.-L. Pen, C.-T. Yu, and W.-S. Hwang, “Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production,” Bioresource 111 Technology, vol. 102, no. 3, pp. 2916 – 2924, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960852410018547 [160] C. HARADA, Y. SAITO, Y. NAKAMURA, and H. MINATO, “The effect of sodium hydroxide treatment of rice straw on in situ disappearance of hemicel- lulose and lignin in its cell wall,” Nihon Chikusan Gakkaiho, vol. 72, no. 1, pp. 19–25, 2001. [161] Y.-S. Cheng, Y. Zheng, C. W. Yu, T. M. Dooley, B. M. Jenkins, and J. S. VanderGheynst, “Evaluation of high solids alkaline pretreatment of rice straw,” Applied Biochemistry and Biotechnology, vol. 162, no. 6, pp. 1768–1784, 11 2010. [Online]. Available: https://doi.org/10.1007/s12010-010-8958-4 [162] I. Kim and J.-I. Han, “Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology,” Biomass and Bioenergy, vol. 46, pp. 210 – 217, 2012, international Conference on Lignocellulosic ethanol. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S0961953412003388 [163] R. C. de Assis Castro, B. G. Fonseca, H. T. L. dos Santos, I. S. Ferreira, S. I. Mussatto, and I. C. Roberto, “Alkaline deacetylation as a strategy to improve sugars recovery and ethanol production from rice straw hemicellulose and cellulose,” Industrial Crops and Products, vol. 106, pp. 65 – 73, 2017, challenges in Building a Sustainable Biobased Economy. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0926669016305787 [164] S. Harun and S. Geok, “Effect of sodium hydroxide pretreatment on rice straw composition,” Indian Journal of Science and Technology, vol. 9, no. 21, 2016. [165] J. Du, Y. Qian, Y. Xi, and X. Lü, “Hydrothermal and alkaline thermal pretreatment at mild temperature in solid state for physicochemical properties and biogas production from anaerobic digestion of rice straw,” Renewable Energy, vol. 139, pp. 261 – 267, 2019. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0960148119301107 [166] G. Mancini, S. Papirio, G. Riccardelli, P. N. Lens, and G. Esposito, “Trace elements dosing and alkaline pretreatment in the anaerobic digestion of rice straw,” Bioresource Technology, vol. 247, pp. 897 – 903, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0960852417317807 [167] L. Dong, G. Cao, L. Zhao, B. Liu, and N. Ren, “Alkali/urea pretreatment of rice straw at low temperature for enhanced biological hydrogen production,” 112 Bioresource Technology, vol. 267, pp. 71 – 76, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960852418307156 [168] D. J. Shetty, P. Kshirsagar, S. Tapadia-Maheshwari, V. Lanjekar, S. K. Singh, and P. K. Dhakephalkar, “Alkali pretreatment at ambient temperature: A promising method to enhance biomethanation of rice straw,” Bioresource Technology, vol. 226, pp. 80 – 88, 2017. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0960852416316546 [169] W. Xing, G. Xu, J. Dong, R. Han, and Y. Ni, “Novel dihydrogen- bonding deep eutectic solvents: Pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield,” Chemical Engineering Journal, vol. 333, pp. 712 – 720, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1385894717316832 [170] D. Liu, X. Yan, S. Zhuo, M. Si, M. Liu, S. Wang, L. Ren, L. Chai, and Y. Shi, “Pandoraea sp. b-6 assists the deep eutectic solvent pretreatment of rice straw via promoting lignin depolymerization,” Bioresource Technology, vol. 257, pp. 62 – 68, 2018. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S0960852418302037 [171] X.-D. Hou, A.-L. Li, K.-P. Lin, Y.-Y. Wang, Z.-Y. Kuang, and S.-L. Cao, “Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment,” Bioresource Technology, vol. 249, pp. 261 – 267, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0960852417318369 [172] X.-D. Hou, G.-J. Feng, M. Ye, C.-M. Huang, and Y. Zhang, “Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment,” Bioresource Technology, vol. 238, pp. 139 – 146, 2017. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0960852417305084 [173] C.-W. Zhang, S.-Q. Xia, and P.-S. Ma, “Facile pretreatment of lignocellulosic biomass using deep eutectic solvents,” Bioresource Technology, vol. 219, pp. 1 – 5, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0960852416309907 [174] C. Florindo, M. M. Oliveira, L. C. Branco, and I. M. Marrucho, “Carbohydrates-based deep eutectic solvents: Thermophysical properties and rice straw dissolution,” Journal of Molecular Liquids, vol. 247, pp. 441 – 447, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0167732217330581 113 [175] A. K. Kumar, B. S. Parikh, and M. Pravakar, “Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue,” Environmental Science and Pollution Research, vol. 23, no. 10, pp. 9265–9275, 5 2016. [Online]. Available: https://doi.org/10.1007/s11356-015-4780-4 [176] N. Sweygers, J. Harrer, R. Dewil, and L. Appels, “A microwave-assisted process for the in-situ production of 5-hydroxymethylfurfural and furfural from lignocellulosic polysaccharides in a biphasic reaction system,” Journal of Cleaner Production, vol. 187, pp. 1014 – 1024, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0959652618308758 [177] J. Binder and R. Raines, “Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals,” Journal of the American Chemical Society, vol. 131, pp. 1979–85, 02 2009. [178] L. Yan, R. Ma, H. Wei, L. Li, B. Zou, and Y. Xu, “Ruthenium trichloride catalyzed conversion of cellulose into 5-hydroxymethylfurfural in biphasic system,” Bioresource Technology, vol. 279, pp. 84 – 91, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0960852419301531 [179] Q. Wu, G. Zhang, M. Gao, S. Cao, L. Li, S. Liu, C. Xie, L. Huang, S. Yu, and A. J. Ragauskas, “Clean production of 5-hydroxymethylfurfural from cellulose using a hydrothermal/biomass-based carbon catalyst,” Journal of Cleaner Production, vol. 213, pp. 1096 – 1102, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0959652618340034 [180] S. Yin, Y. Pan, and Z. Tan, “Hydrothermal conversion of cellulose to 5-hydroxymethyl furfural,” International Journal of Green Energy, vol. 8, no. 2, pp. 234–247, 2011. [Online]. Available: https://doi.org/10.1080/ 15435075.2010.548888 [181] X. Qi, M. Watanabe, T. M. Aida, and R. L. Smith Jr, “Fast transformation of glucose and di-/polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system,” ChemSusChem, vol. 3, no. 9, pp. 1071–1077, 2010. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/ 10.1002/cssc.201000124 [182] L. Atanda, A. Shrotri, S. Mukundan, Q. Ma, M. Konarova, and J. Beltramini, “Direct production of 5-hydroxymethylfurfural via catalytic conversion of simple and complex sugars over phosphated tio2,” ChemSusChem, 114 vol. 8, no. 17, pp. 2907–2916, 2015. [Online]. Available: https: //onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201500395 [183] Y. Su, H. M. Brown, X. Huang, X. dong Zhou, J. E. Amonette, and Z. C. Zhang, “Single-step conversion of cellulose to 5-hydroxymethylfurfural (hmf), a versatile platform chemical,” Applied Catalysis A: General, vol. 361, no. 1, pp. 117 – 122, 2009. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0926860X09002579 [184] J. Song, B. Zhang, J. Shi, H. Fan, J. Ma, Y. Yang, and B. Han, “Efficient conversion of glucose and cellulose to 5-hydroxymethylfurfural in dbu-based ionic liquids,” RSC Adv., vol. 3, pp. 20 085–20 090, 2013. [Online]. Available: http://dx.doi.org/10.1039/C3RA43934H [185] B. Kim, J. Jeong, D. Lee, S. Kim, H.-J. Yoon, Y.-S. Lee, and J. K. Cho, “Direct transformation of cellulose into 5-hydroxymethyl-2- furfural using a combination of metal chlorides in imidazolium ionic liquid,” Green Chem., vol. 13, pp. 1503–1506, 2011. [Online]. Available: http://dx.doi.org/10.1039/C1GC15152E [186] Z.-D. Ding, J.-C. Shi, J.-J. Xiao, W.-X. Gu, C.-G. Zheng, and H.-J. Wang, “Catalytic conversion of cellulose to 5-hydroxymethyl furfural using acidic ionic liquids and co-catalyst,” Carbohydrate Polymers, vol. 90, no. 2, pp. 792 – 798, 2012. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0144861712005425 [187] J. Shi, H. Gao, Y. Xia, W. Li, H. Wang, and C. Zheng, “Efficient process for the direct transformation of cellulose and carbohydrates to 5-(hydroxymenthyl)furfural with dual-core sulfonic acid ionic liquids and co-catalysts,” RSC Adv., vol. 3, pp. 7782–7790, 2013. [Online]. Available: http://dx.doi.org/10.1039/C3RA41062E [188] Y. Zhang, J. Pan, M. Gan, H. Ou, Y. Yan, W. Shi, and L. Yu, “Acid–chromic chloride functionalized natural clay-particles for enhanced conversion of one- pot cellulose to 5-hydroxymethylfurfural in ionic liquids,” RSC Advances, vol. 4, p. 11664, 01 2014. [189] Y. Zhang, J. Pan, Y. Shen, W. Shi, C. Liu, and L. Yu, “Brønsted acidic polymer nanotubes with tunable wettability toward efficient conversion of one-pot cellu- lose to 5-hydroxymethylfurfural,” ACS Sustainable Chemistry & Engineering, vol. 3, pp. 871–879, 05 2015. [190] H. Abou-Yousef and E. B. Hassan, “A novel approach to enhance the activity of h-form zeolite catalyst for production of hydroxymethylfurfural from 115 cellulose,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 4, pp. 1952 – 1957, 2014. [Online]. Available: http://www.sciencedirect.com/science/ article/pii/S1226086X1300436X [191] C. Benjamin R., P. Michael J., and R. Ronald T., “Organocatalytic conversion of cellulose into a platform chemical,” Chemical Science, vol. 4, no. 1, 1 2012. [192] L. Zhou, R. Liang, Z. Ma, T. Wu, and Y. Wu, “Conversion of cellulose to hmf in ionic liquid catalyzed by bifunctional ionic liquids,” Bioresource Technology, vol. 129, pp. 450 – 455, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960852412016884 [193] F. Tao, H. Song, and L. Chou, “Catalytic conversion of cellulose to chemicals in ionic liquid,” Carbohydrate Research, vol. 346, no. 1, pp. 58 – 63, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0008621510004672 [194] N. Shi, Q. Liu, Q. Zhang, T. Wang, and L. Ma, “High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system,” Green Chem., vol. 15, pp. 1967–1974, 2013. [Online]. Available: http://dx.doi.org/10.1039/C3GC40667A [195] S. Xiao, B. Liu, Y. Wang, Z. Fang, and Z. Zhang, “Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide–ionic liquid mixtures,” Bioresource Technology, vol. 151, pp. 361 – 366, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0960852413016829 [196] J. Wang, J. Ren, X. Liu, J. Xi, Q. Xia, Y. Zu, G. Lu, and Y. Wang, “Direct conversion of carbohydrates to 5-hydroxymethylfurfural using sn-mont catalyst,” Green Chem., vol. 14, pp. 2506–2512, 2012. [Online]. Available: http://dx.doi.org/10.1039/C2GC35699F [197] B. Liu, Z. Zhang, and Z. K. Zhao, “Microwave-assisted catalytic conversion of cellulose into 5-hydroxymethylfurfural in ionic liquids,” Chemical Engineering Journal, vol. 215-216, pp. 517 – 521, 2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1385894712014179 [198] L. Hu, G. Zhao, X. Tang, Z. Wu, J. Xu, L. Lin, and S. Liu, “Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural over cellulose- derived carbonaceous catalyst in ionic liquid,” Bioresource Technology, vol. 148, pp. 501 – 507, 2013. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S0960852413014399 116 [199] H. Li, Q. Zhang, X. Liu, F. Chang, D. Hu, Y. Zhang, W. Xue, and S. Yang, “Incl3-ionic liquid catalytic system for efficient and selective conversion of cellulose into 5-hydroxymethylfurfural,” RSC Adv., vol. 3, pp. 3648–3654, 2013. [Online]. Available: http://dx.doi.org/10.1039/C3RA23387A [200] Z. Cao, Z. Fan, Y. Chen, M. Li, T. Shen, C. Zhu, and H. Ying, “Efficient preparation of 5-hydroxymethylfurfural from cellulose in a biphasic system over hafnyl phosphates,” Applied Catalysis B: Environmental, vol. 244, pp. 170 – 177, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0926337318310695 [201] X. Li, K. Peng, Q. Xia, X. Liu, and Y. Wang, “Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites,” Chemical Engineering Journal, vol. 332, pp. 528 – 536, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1385894717310562 [202] R. Rinaldi and F. Schuth, “Acid hydrolysis of cellulose as the entry point into biorefinery schemes,” ChemSusChem, vol. 2, no. 12, pp. 1096–1107, 2009. [Online]. Available: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/ 10.1002/cssc.200900188 [203] S. Van de Vyver, J. Thomas, J. Geboers, S. Keyzer, M. Smet, W. Dehaen, P. A. Jacobs, and B. F. Sels, “Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s,” Energy Environ. Sci., vol. 4, pp. 3601–3610, 2011. [Online]. Available: http://dx.doi.org/10.1039/C1EE01418H [204] M. Li, W. Li, Y. Lu, H. Jameel, H.-m. Chang, and L. Ma, “High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/gamma-valerolactone system,” RSC Adv., vol. 7, pp. 14 330–14 336, 03 2017. [205] M. A. Kougioumtzis, A. Marianou, K. Atsonios, C. Michailof, N. Nikolopoulos, N. Koukouzas, K. Triantafyllidis, A. Lappas, and E. Kakaras, “Production of 5-hmf from cellulosic biomass: Experimental results and integrated process simulation,” Waste and Biomass Valorization, vol. 9, no. 12, pp. 2433–2445, 12 2018. [Online]. Available: https://doi.org/10.1007/s12649-018-0267-0 [206] N. R. Peela, S. K. Yedla, B. Velaga, A. Kumar, and A. K. Golder, “Choline chloride functionalized zeolites for the conversion of biomass derivatives to 5-hydroxymethylfurfural,” Applied Catalysis A: General, vol. 580, pp. 59 – 70, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0926860X19301991 117 [207] J. M. Carraher, C. N. Fleitman, and J.-P. Tessonnier, “Kinetic and mechanistic study of glucose isomerization using homogeneous organic brønsted base catalysts in water,” ACS Catalysis, vol. 5, no. 6, 6 2015. [Online]. Available: http://par.nsf.gov/biblio/10048582 [208] I. K. Yu and D. C. Tsang, “Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms,” Bioresource Technology, vol. 238, pp. 716 – 732, 2017. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0960852417305072 [209] K. Buchholz and J. Seibel, “Industrial carbohydrate biotransformations,” Carbohydrate Research, vol. 343, no. 12, pp. 1966 – 1979, 2008, selected papers from the 14th European Carbohydrate Symposium, Lübeck, Germany, Sept. 2007. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S000862150800075X [210] V. J. Jensen and S. Rugh, “[33] industrial-scale production and application of immobilized glucose isomerase,” in Immobilized Enzymes and Cells, Part C, ser. Methods in Enzymology. Academic Press, 1987, vol. 136, pp. 356 – 370. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0076687987360355 [211] H. Zhao, J. E. Holladay, H. Brown, and Z. C. Zhang, “Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural,” Science, vol. 316, no. 5831, pp. 1597–1600, 2007. [Online]. Available: https: //science.sciencemag.org/content/316/5831/1597 [212] B. Saha and M. M. Abu-Omar, “Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents,” Green Chem., vol. 16, pp. 24–38, 2014. [Online]. Available: http://dx.doi.org/10.1039/C3GC41324A [213] X. Yu, X. Gao, R. Tao, and L. Peng, “Insights into the metal salt catalyzed 5- ethoxymethylfurfural synthesis from carbohydrates.” 2017. [Online]. Available: https://www.mdpi.com/2071-1050/12/2/734 [214] A. T. Pedersen, R. Ringborg, T. Grotkjer, S. Pedersen, and J. M. Woodley, “Synthesis of 5-hydroxymethylfurfural (hmf) by acid catalyzed dehydration of glucose-fructose mixtures,” Chemical Engineering Journal, vol. 273, pp. 455 – 464, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S1385894715004106 [215] T. Wang, J. A. Glasper, and B. H. Shanks, “Kinetics of glucose dehydration catalyzed by homogeneous lewis acidic metal salts in water,” Applied 118 Catalysis A: General, vol. 498, pp. 214 – 221, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0926860X15002239 [216] I. K. Yu, D. C. Tsang, A. C. Yip, S. S. Chen, Y. S. Ok, and C. S. Poon, “Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps,” Bioresource Technology, vol. 219, pp. 338 – 347, 2016. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0960852416311233 [217] H. M. Mirzaei and B. Karimi, “Sulphanilic acid as a recyclable bifunctional organocatalyst in the selective conversion of lignocellulosic biomass to 5-hmf,” Green Chem., vol. 18, pp. 2282–2286, 2016. [Online]. Available: http://dx.doi.org/10.1039/C5GC02440D [218] F. S. Asghari and H. Yoshida, “Conversion of japanese red pine wood (pinus densiflora) into valuable chemicals under subcritical water conditions,” Carbo- hydrate Research, vol. 345, no. 1, pp. 124 – 131, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0008621509004923 [219] T. Saito, M. Sasaki, H. Kawanabe, Y. Yoshino, and M. Goto, “Subcritical water reaction behavior of d-glucose as a model compound for biomass using two different continuous-flow reactor configurations,” Chemical Engineering & Technology, vol. 32, no. 4, pp. 527–533, 2009. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ceat.200800537 [220] S. H. Mushrif, S. Caratzoulas, and D. G. Vlachos, “Understanding solvent effects in the selective conversion of fructose to 5-hydroxymethyl-furfural: a molecular dynamics investigation,” Phys. Chem. Chem. Phys., vol. 14, pp. 2637–2644, 2012. [Online]. Available: http://dx.doi.org/10.1039/C2CP22694D [221] S. Jia, Z. Xu, and Z. Zhang, “Catalytic conversion of glucose in dimethylsulfoxide/water binary mix with chromium trichloride: Role of water on the product distribution,” Chemical Engineering Journal, vol. 254, pp. 333 – 339, 2014. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S1385894714007050 [222] J. Wang, W. Xu, J. Ren, X. Liu, G. Lu, and Y. Wang, “Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid,” Green Chem., vol. 13, pp. 2678–2681, 2011. [Online]. Available: http://dx.doi.org/10.1039/C1GC15306D [223] C. Li, Z. Zhang, and Z. K. Zhao, “Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation,” 119 Tetrahedron Letters, vol. 50, no. 38, pp. 5403 – 5405, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0040403909014014 [224] P. K. Rout, A. D. Nannaware, O. Prakash, A. Kalra, and R. Rajasekharan, “Synthesis of hydroxymethylfurfural from cellulose using green processes: A promising biochemical and biofuel feedstock,” Chemical Engineering Science, vol. 142, pp. 318 – 346, 2016. [Online]. Available: http: //www.sciencedirect.com/science/article/pii/S0009250915007794 [225] A. S. Khan, Z. Man, A. Nasrullah, Z. Ullah, N. Muhammad, A. Rahim, A. Bustam, A. Idris, and M. Uroos, “Chapter 1 - conversion of biomass to chemicals using ionic liquids,” in Green Sustainable Process for Chemical and Environmental Engineering and Science, Inamuddin, A. M. Asiri, and S. Kanchi, Eds. Elsevier, 2020, pp. 1 – 30. [Online]. Available: http://www.sciencedirect.com/science/article/pii/B9780128173862000019 [226] F. Jiang, Q. Zhu, D. Ma, X. Liu, and X. Han, “Direct conversion and nmr observation of cellulose to glucose and 5-hydroxymethylfurfural (hmf) catalyzed by the acidic ionic liquids,” Journal of Molecular Catalysis A: Chemical, vol. 334, no. 1, pp. 8 – 12, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1381116910004164 [227] W. Li, T. Yang, M. Su, and Y. Liu, “Catalytic conversion of glucose to 5-hydroxymethylfurfural and furfural by a phosphate-doped sno2 catalyst in 𝛾-valerolactone-water system,” Catalysis Lette, vol. 150, pp. 3304 – 3313, 2020. [Online]. Available: https://doi.org/10.1007/s10562-020-03227-7 [228] B. Song, Y. Yu, and H. Wu, “Solvent effect of gamma-valerolactone (gvl) on cellulose and biomass hydrolysis in hot-compressed gvl/water mixtures,” Fuel, vol. 232, pp. 317 – 322, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0016236118309992 [229] L. Zhang, G. Xi, J. Zhang, H. Yu, and X. Wang, “Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural,” Bioresource Technology, vol. 224, pp. 656 – 661, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0960852416316182 [230] Y. Han, L. Ye, X. Gu, P. Zhu, and X. Lu, “Lignin-based solid acid catalyst for the conversion of cellulose to levulinic acid using 𝛾-valerolactone as solvent,” Industrial Crops and Products, vol. 127, pp. 88 – 93, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0926669018309312 120 [231] S. M. Bruce, Z. Zong, A. Chatzidimitriou, L. E. Avci, J. Q. Bond, M. A. Carreon, and S. G. Wettstein, “Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a 𝛾-valerolactone/water solvent,” Journal of Molecular Catalysis A: Chemical, vol. 422, pp. 18 – 22, 2016, contributions of Homogeneous and Heterogeneous Catalysis in Biorefining: Special Issue in Honor of Prof. Ulf Schuchardt. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1381116916300590 [232] J. S. Luterbacher, J. M. Rand, D. M. Alonso, J. Han, J. T. Youngquist, C. T. Maravelias, B. F. Pfleger, and J. A. Dumesic, “Nonenzymatic sugar production from biomass using biomass-derived 𝛾-valerolactone,” Science, vol. 343, no. 6168, pp. 277–280, 2014. [Online]. Available: https://science.sciencemag.org/content/343/6168/277 [233] J. M. R. Gallo, D. M. Alonso, M. A. Mellmer, and J. A. Dumesic, “Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents,” Green Chem., vol. 15, pp. 85–90, 2013. [Online]. Available: http://dx.doi.org/10.1039/C2GC36536G [234] X. Tian, B. Qi, S. Zhang, J. Luo, and Y. Wan, “Catalytic production of 5-hydroxymethylfurfural from sucrose and molasses by aluminum chloride in green aqueous 𝛾-valerolactone system,” Biomass Conversion and Biorefinery, 2020. [Online]. Available: https://doi.org/10.1007/s13399-020-00603-6 [235] B. Seemala, V. Haritos, and A. Tanksale, “Levulinic acid as a catalyst for the production of 5-hydroxymethylfurfural and furfural from lignocellulose biomass,” ChemCatChem, vol. 8, no. 3, pp. 640–647, 2016. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cctc.201501105 [236] J. B. Binder, A. V. Cefali, J. J. Blank, and R. T. Raines, “Mechanistic insights on the conversion of sugars into 5-hydroxymethylfurfural,” Energy Environ. Sci., vol. 3, pp. 765–771, 2010. [Online]. Available: http: //dx.doi.org/10.1039/B923961H [237] S. Xu, D. Pan, W. Li, P. Shen, Y. Wu, X. Song, Y. Zhu, N. Xu, L. Gao, and G. Xiao, “Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurfural using an efficient and inexpensive manganese phosphate catalyst,” Fuel Processing Technology, vol. 181, pp. 199 – 206, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0378382018307859 [238] Y. Yang, C.-w. Hu, and M. M. Abu-Omar, “Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using alcl3·6h2o catalyst 121 in a biphasic solvent system,” Green Chem., vol. 14, pp. 509–513, 2012. [Online]. Available: http://dx.doi.org/10.1039/C1GC15972K [239] H. Ma, F. Wang, Y. Yu, L. Wang, and X. Li, “Autocatalytic production of 5- hydroxymethylfurfural from fructose-based carbohydrates in a biphasic system and its purification,” Industrial & Engineering Chemistry Research, vol. 54, pp. 2657–2666, 03 2015. [240] C. Moreau, A. Finiels, and L. Vanoye, “Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-h-3-methyl imidazolium chloride acting both as solvent and catalyst,” Journal of Molecular Catalysis A: Chemical, vol. 253, no. 1, pp. 165 – 169, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1381116906006753 [241] R. Weingarten, J. Cho, R. Xing, W. C. Conner Jr, and G. W. Huber, “Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions,” ChemSusChem, vol. 5, no. 7, pp. 1280–1290, 2012. [Online]. Available: https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/ 10.1002/cssc.201100717 [242] T. M. Aida, Y. Sato, M. Watanabe, K. Tajima, T. Nonaka, H. Hattori, and K. Arai, “Dehydration of d-glucose in high temperature water at pressures up to 80mpa,” The Journal of Supercritical Fluids, vol. 40, no. 3, pp. 381 – 388, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/ pii/S0896844606002117 [243] C. C. Stowers, E. M. Ferguson, and R. D. Tanner, “Development of activity- based cost functions for cellulase, invertase, and other enzymes,” in Biotech- nology for Fuels and Chemicals, W. S. Adney, J. D. McMillan, J. Mielenz, and K. T. Klasson, Eds. Totowa, NJ: Humana Press, 2008, pp. 475–485. [244] J. Cherry, S. Ko, R. Grainger, A. Prokop, and R. D. Tanner, “Developing an objective function to characterize the tradeoffs in salting out and the foam and droplet fractionation processes,” Brazilian Journal of Chemical Engineering, vol. 17, pp. 233–238, 06 2000. [Online]. Available: http://www.scielo.br/scielo. php?script=sci_arttext&pid=S0104-66322000000200011&nrm=iso [245] N. C. for Biotechnology Information USA, “Pubchem,” 2020. [Online]. Available: https://pubchem.ncbi.nlm.nih.gov/ [246] G. Merck KGaA, Darmstadt, “India sigma-aldrich,” 2020. [Online]. Available: https://www.sigmaaldrich.com/india.html 122 [247] D. Barana, A. Salanti, M. Orlandi, D. S. Ali, and L. Zoia, “Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and arundo donax,” Industrial Crops and Products, vol. 86, pp. 31–39, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0926669016301753 [248] Z. Tian, J. Chen, X. Ji, Q. Wang, G. Yang, and P. Fatehi, “Dilute sulfuric acid hydrolysis of pennisetum (sp.) hemicellulose,” BioResources, vol. 12, no. 2, 2017. [Online]. Available: https://ojs.cnr.ncsu.edu/index.php/BioRes/ article/view/BioRes_12_2_2609_Tian_Dilute_Sulfuric_Acid_Hydrolysis [249] B. Xiao, X. Sun, and R. Sun, “Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw,” Polymer Degradation and Stability, vol. 74, no. 2, pp. 307–319, 2001. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S014139100100163X [250] R. Sun, J. Tomkinson, P. Ma, and S. Liang, “Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments,” Carbohydrate Polymers, vol. 42, no. 2, pp. 111–122, 2000. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0144861799001368 [251] R. C. R. Ines C Roberto, Solange I Mussatto, “Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor,” Industrial Crops and Products, vol. 17, pp. 171–176, 2003. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S092666900200095X [252] S. Zhu, W. Huang, W. Huang, K. Wang, Q. Chen, and Y. Wu, “Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent,” Applied Energy, vol. 154, pp. 190–196, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S0306261915006017 [253] K. Karimi, S. Kheradmandinia, and M. J. Taherzadeh, “Conversion of rice straw to sugars by dilute-acid hydrolysis,” Biomass and Bioenergy, vol. 30, no. 3, pp. 247–253, 2006. [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0961953405001996 [254] Y.-S. Cheng, Y. Zheng, C. W. Yu, T. M. Dooley, B. M. Jenkins, and J. S. VanderGheynst, “Evaluation of high solids alkaline pretreatment of rice straw,” Applied Biochemistry and Biotechnology, vol. 162, p. 1768–1784, 2010. [Online]. Available: https://link.springer.com/article/10. 1007/s12010-010-8958-4#citeas 123 [255] G. Yang and S.-J. Park, “Conventional and microwave hydrothermal synthesis and application of functional materials: A review,” Materials, vol. 12, no. 7, 2019. [Online]. Available: https://www.mdpi.com/1996-1944/12/7/1177 124