118 6 REFERENCES Abily, M., Bertrand, N., Delestre, O., Gourbesville, P., & Duluc, C. M. (2016). Spatial global sensitivity analysis of high resolution classified topographic data use in 2D urban flood modelling. Environmental Modelling Software, 77, 183-195. Abdulla, F., & Badranih, L. (2009). Application of a Rainfall-Runoff Model to three catchments in Iraq. Taylor and Francis, London. Ali, H. T. (2016). Digital Urban Terrain Characterization for 1D-2D Hydrodynamic Flood Modelling in Kigali, Rwanda, MSc Thesis, University of Twente. Ali, A., Solomatine, D. P., & Di Baldassarre, G. (2015). Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods. Hydrology and Earth System Sciences, 19(1), 631–643. Alkema, D. (2007). Simulating Floods: on the application of a 2D hydraulic model for flood hazard and risk assessment.MSc Theses, International Institute for geo- information science and earth observation, Netherlands Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis 27, 93–115 Ariyabandu, M. M., & Hulangamuwa, P. (2002). Corporate Social Responsibility and Natural Disaster Reduction in Sri Lanka, Report. Apirumanekul, C., & Mark, O. (2001). Modelling of Urban Flooding in Dhaka City. In: Proceedings of 4th DHI Software Conference, 101-108. ASTER GDEM Readme Handbook. Bates, P. D., & De Roo, A. P. J. (2000). A simple raster-based model for flood inundation simulation. Journal of Hydrology, 236(1–2), 54–77. Bates, P. D., Horritt, M. S., Hervouet, J. M. (1998a). Investigating two-dimensional, finite element predictions of floodplain inundation using fractal generated topography. Hydrological Processes, 12, 1257– 1277. Bates, P. D., & Horritt, M.S. (2002). LISFLOOD-FP User Manual and Technical note, Technical report, University of Bristol. Bates, P. D., Marks, K. J., & Horritt, M. S. (2003). Optimal use of high-resolution topographic data in flood inundation models. Hydrological Processes, 17, 537–557. Bates, P. D., Horritt, M. S., & Timothy, J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387 (1–2), 33–45. https://doi.org/10.1016/jhydrol.2010.03.027. Becker, A., & Grunewald, U. (2003). Flood risk in central Europe. Science, 300, 1099- 1109. Berry, P. A. M., Garlick, J. D., & Smith, R. G. (2007). Near-global validation of the SRTM DEM using satellite radar altimetry, Remote Sensing Environment, 106, 17–27. 119 Beven, K. (2001). Changing ideas in hydrology- The case of physically-based models. Journal of Hydrology, 105(1–2), 157–172. http://doi.org/10.1016/0022-1694 (89)901 01-7. Beven, K. & Binley, A. (1992). The future of distributed models – model calibration and uncertainty prediction, Hydrological. Process. 6, 279–298. Bozoğlu, B. (2015). 1-D and 2-D flood modelling studies and upstream structural measures for Samsun city terme district, MSc Thesis, The graduate school of natural and applied sciences of Middle East Technical University. Brandt, S. (2005). Resolution issues of elevation data during inundation modelling of river floods. Proceedings of the XXXI IAHR Congress, 3573–3581. Brunner, G. W. (2014). Combine 1D and 2D Modeling with HEC-RAS. USACE- HEC. Casas, A., Benito, G., Thorndycraft, V. R., & Rico, M. (2006). The topographic data source of digital terrain models is a key element in the accuracy of hydraulic flood modelling. Earth Surface Processes and Landforms, 31, 444-456. Charlton, M. E., Large, A. R. G., & Fuller, I. C. (2003). Application of airborne LiDAR in river environments: the River Coquet, Northumberland, UK. Earth Surface Processes and Landforms, 28(3), 299–306. Chaieb, A., Rebai, N. & Bouaziz, S. (2016). Vertical Accuracy Assessment of SRTM Ver 4 .1 and ASTER GDEM Ver 2 Using GPS Measurements in Central West of Tunisia. Journal of Geographic Information System, 8, 57–64. Chow, V. T. (1959). Open channel hydraulics. McGraw-Hill Book Company, New York. Chu, X., & Steinman, A. (2009). Event and Continuous Hydrologic Modeling with HEC-HMS. Journal of Irrigation and Drainage Engineering, 135(1), 119–124. https://doi.org/10.1061/ (ASCE) 0733-9437(2009)135:1(119). Consultative Group for International Agriculture Research Consortium for Spatial Information (CGIAR-CSI) [web log post]. Retrieved 2004, from http://srtm.csi. cgiar.org. Cook, A. & Merwade, V. (2009). Effect of topographic data, geometric configuration and modelling approach on flood inundation mapping. Journal of Hydrology, 377, 131–142. Danish Hydraulic Institute, (1997). MIKE11 GIS Reference and User Manual. DHI: Horsholm Danish Hydraulic Institute, (2007). MIKE 21 Environmental Hydraulics, Advection–Dispersion Module Reference Manual. DHI: Horsholm. De Silva, M. M. G. T., Weerakoon, S. B., Herath, S., Ratnayake, U. R., & Mahanama, S. (2012). Flood Inundation Mapping along the Lower Reach of Kelani River Basin under the Impact of Climatic Change. Engineer: Journal of the Institution of Engineers, Sri Lanka, 45(2). Disaster Management Center Annual Report, 2012. 120 Disaster Management Center Website, Retrieved from http:// www.desinventar.lk. Dong, L. (2006). Evaluation of high-quality topographical data for geomorphological and flood impact studies in the upland area: North york moors, UK, Durham Theses, Durham University. Dottori, F., Di Baldassarre, G., & Todini, E. (2013). Detailed data is welcome, but with a pinch of salt: Accuracy, precision, and uncertainty in flood inundation modelling, Water Resources Research, 49, 6079–6085, doi:10.1002/wrcr.20406. EEA. (2001). Sustainable water use in Europe. Part 3: Extreme hydrological events: floods and droughts. Environmental Issues Report No 21, Copenhagen, 2001. Engel, B. D., Storm, M., White, J. G., & Arnold, A. (2007). A hydrologic/water quality model application protocol. Journal of American Water Resources Association, 43(5), 1223-1236. Erdogan, S. (2010). Modelling the spatial distribution of DEM error with geographically weighted regression: An experimental study. Computational Geoscience, 36, 34–43. Erskine, R. H., Green, T. R., Ramirez, J. A., & Macdonald, L. H. (2007). Digital Elevation Accuracy and Grid Cell Size : Effects on Estimated Terrain Attributes, 71(4). https://doi.org/10.2136/sssaj2005.0142 ESRI (USA). (2014a). ArcGIS 10.1 Help-Cell size of raster data. Environmental Systems Research Institute. Farr, T., & Kobrick, M. (2001). The Shuttle Radar Topography Mission. American Geophysical Union EOS, 81, 583–585. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2002). Geographically Weighted Regression: The analysis of spatially varying relationships, first edition John Wiley & Sons, Chichester, UK 269. Gallay, M., Lloyd, C., & McKinley, J. (2010). Using geographically weighted regression for analysing elevation error of high-resolution DEMS. In Proceedings of the Ninth International Accuracy Symposium, Leicester, UK. Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24, 189–206. Ghasemi, A., & Zahediasl, S. (2012). Normality tests for statistical analysis: a guide for non-statisticians. International journal of endocrinology and metabolism, 10(2), 486-9. Gichamo, T. Z., Popescu, I., Jonoski, A., & Solomatine, D. (2012). River cross-section extraction from the ASTER global DEM for flood modelling. Environmental Modelling Software, 31, 37–46. Gilles, D. W. (2010). Application of numerical models for improvement of flood preparedness. MS (Master of Science) thesis, University of Iowa. 121 Gomez, C. (2017). Tsunami Flood Simulation Investigation using NAYS-2D code in Kobe- City.[Research Report] Kobe University. Gomez, C., & Purdie, H. (2018). Point cloud technology and 2D computational flow dynamic modelling for rapid hazards and disaster risk appraisal on Yellow Creek fan, Southern Alps of New Zealand. Progress in Earth and Planetary Science, 5(1). Gorokhovich, Y., Voustianiouk, A. (2006). Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from the USA and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment, 104 (4), 409–415. GTOPO READ me file (2015, January). Retrieved from http://edcdaac.usgs. gov/ gtopo30 /README.asp. Gunasekara, I. P. A. (2008). Flood hazard mapping in lower reach of Kelani basin. Journal of the Institution of Engineers, 45 (2),149-154. Gupta, H. V., Sorooshian, S., & Yapo, P. O. (1998). Toward improved calibration of hydrologic models: Multiple and non-commensurable measures of information, Water Resour. Res. 34, 4, 751-763, doi: 10.1029/97WR03495. Gupta, H. V., Sorooshian, S., Yapo, P. O. (1999). Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. Journal of Hydrological Engineering, 4(2), 135–143. Haile, A. T. (2005). Integrating Hydrodynamic Models and High-Resolution DEM (LIDAR) for flood modelling. MSc Theses, International Institute for geo-information science and earth observation, Netherlands. Haile, A. & Rientjes, T. (2005). Effects of LiDAR DEM resolution in flood modelling: a model sensitivity study for the city of Tegucigalpa, Honduras. Isprs Wg Iii/3, Iii/4 workshop” Laserscanning”, Netherland, 168–173. Hale, J. (2003). Urban flood routing, the next step. WaPUG Autumn Conference, Blackpool, UK. Hall, J. W., Tarantola, S., Bates, P. D., & Horritt, M. S. (2005). Distributed Sensitivity Analysis of Flood Inundation Model Calibration. Journal of Hydraulic Engineering, 131, 117–126. Hamby, D. M. (1994). A review of techniques for parameter sensitivity analysis of environmental models. Environmental Monitoring and Assessment, 32(2), 135-154. Hashmi, H. N., Siddiqui, Q. T. M., Kamal, M. A., Mughal, H. R., & Ghumman, A. R. (2012). Assessment of inundation extent for flash flood management. African Journal of Agricultural Research, 7(8), 1346-1357. HEC-RAS River Analysis System (2010) Hydraulic Reference Manual. US Army Corps of Engineers-Hydrologic Engineering Center. Hodgson, M. E, Jensen, J. R., Schmidt, L., Schill, S., & Davis, B. (2003). An evaluation of LIDAR-and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sensing Environment, 84, 295–308. 122 Höhle, J., & Höhle, M. (2009). Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS Journal of Photogrammetric Remote Sensing, 64, 398–406. Holmes, K. W., Chadwick, O. A., & Kyriankidis, P. C. (2000). Error in USGS 30 meter digital elevation model and its impact on terrain modelling. Journal of Hydrology, 233, 154–173. Horritt, M. S. & Bates, P. D. (2001). Predicting floodplain inundation: Raster-based modelling versus the finite-element approach. Hydrological Processes, 15(5), 825– 842. Huggel, C., Caplan-Auerbach, J., Gruber, S., Monia, B., & Wessels, R. (2008). The 2005 Mt. Steller, Alaska, rock-ice avalanche: Large slope failures in cold permafrost; In: Proceedings of the Ninth International Conference on Permafrost, 29 July 2008, Fairbanks, AK, 747–752. Ibbitt, R. P., & O’Donnell, T. (1971). Fitting methods for conceptual catchment models. Journal of Hydraulic Engineering, 97 (9), 1331–1342. iRIC Software. (2014). Nays2DH Solver Manual. Irie, M., Ahmed, B. A. O., & Komatsu, S. (2015). Numerical Simulation of the Inundation on the Floodplain of Senegal River for the Improvement of the Agricultural Productivity in Mauritania. Journal of Arid Land Studies, 25(3), 121-124. Jang, C. L., & Shimizu, Y. (2005). Numerical simulation of relatively wide, shallow channels with erodible banks. Journal Hydraulic Engineering, 131(7), 565–575. Jarvis, A., Reuter, H. I., Nelson, A., & Guevara, E. (2012). Hole-filled SRTM for the globe Version 4. CGIAR-CSI SRTM 90 m Database 2008. http://srtm.csi.cgiar.org. Accessed on 1 July 2012. Jung, Y., & Merwade, V. (2011). Uncertainty Quantification in Flood Inundation Mapping Using Generalized Likelihood Uncertainty Estimate and Sensitivity Analysis. Journal of Hydrologic Engineering, 17(4), 507–520. Julian, E. (2012). Flood risk analysis: impacts of uncertainty in hazard modelling and vulnerability assessment on damage estimations. PhD thesis, University of Strasbourg, France. Jung, Y., & Merwade, V. (2011). Uncertainty Quantification in Flood Inundation Mapping Using Generalized Likelihood Uncertainty Estimate and Sensitivity Analysis. Journal of Hydrologic Engineering, ASCE, 17(4), 507–520. Kenward, T., Lettenmaier, D. P., Wood, E. F., & Fielding, E., (2000). Effects of digital elevation model accuracy on hydrologic predictions. Remote Sensing of Environment, 74 (3), 432-444. Kiamehr, R. (2005). Effect of the SRTM global DEM on the determination of a high- resolution geoid model : a case study in Iran, 79, 540–551. Kourgialas, N. N., & Karatzas, G. P. (2013). A hydro-economic modelling framework for flood damage estimation and the role of riparian vegetation. Hydrological Processes, 27(4), 515–531. 123 Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. https://doi.org / 10.5194/adgeo-5-89-2005. Laks, I., Sojka, M., Walczak, Z., & Wrózynski, R. (2017). Possibilities of Using Low-Quality Digital Elevation Models of Floodplains in Hydraulic Numerical Models Water, 9, 283. Lang, P. (2010). TELEMAC-2D Software Manual, Version 6.0. Legates, D. R. & McCabe Jr., G. J. (1999). Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation, Water Resources Research, 35 (1), 233–241. Li, J. & Wong, D. W. S. (2010). Effects of DEM sources on hydrologic applications. Computers, Environment and Urban Systems, 34(3), 251–261. Lin, S., Jing, C., Coles, N. A., Chaplot, V., Moore, N. J., & Wu, J. (2012). Evaluating DEM source and resolution uncertainties in the Soil and Water Assessment Tool. Stochastic Environmental Research and Risk Assessment, 27(1), 209–221. Mara, T. A., Tarantola, S., & Annoni, P. (2015). Non-parametric methods for global sensitivity analysis of model output with dependent inputs. Environmental Modelling Software, 72, 173-183. Marks, K. & Bates, P. (2000). Integration of high-resolution topographic data with floodplain models. Hydrologic processes, 14, 2109-2122. Ma, L., Ascough II, J. C., Ahuja, L. R., Shaffer, M. J., Hanson, J. D. & Rojas., K. W. (2000). Root zone water quality model sensitivity analysis using Monte Carlo simulation. Trans. ASAE43(4):883-895. Mata-Lima, H. (2011). Evaluation of the objective functions to improve production history matching performance based on fluid flow behaviour in reservoirs. Journal of Petroleum Science and Engineering, 78(1), 42–53. https://doi.org/ 10.1016/ j.petrol. 2011.05.015. Mazlan, M., & Razi, M. (2014). Generation of flood inundation model-General approach and methodology, 4(3), 19-25. Merwade, V., Cook, A., & Coonrod, J. (2008). GIS techniques for creating river terrain models for hydrodynamic modelling and flood inundation mapping. Environmental Modelling & Software, 23, 1300-1311. Merwade, V., Olivera, F., Arabi, M., & Edleman, S. (2008). Uncertainty in Flood Inundation Mapping: Current issues and future directions. Journal of Hydrologic Engineering, 13(7), 608–620. Monica, J. D. (2015). Flood modelling and the influence of digital terrain models: A case study of the Swannanoa River in North Carolina. MA Thesis, Appalachian State University. Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling : a review of hydrological, geomorphological and biological applications, Hydrological 124 process, 5, 3–30. Moriasi, D. N, Arnold, J. G., Lewis, M. W. V., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. American Society of Agricultural and Biological Engineers, 50(3), 885-900. https://doi.org/10.13031/2013.23153. Moussa, R., & Bocquillon, C. (1996). Criteria for the choice of flood-routing methods in natural channels. Journal of Hydrology, 186, 1–30. Mukherjee, S., Joshi, P. K., Mukherjee, S., & Ghosh, A. (2013). Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21(1), 205–217. Mukherjee, S., Mukherjee, S., Bhardwaj, A., Mukhopadhyay, A., Garg, R. D., & Hazra, S. (2015). Accuracy of Cartosat-1 DEM and its derived attribute, Journal of Earth System Science, 124, 487–495. Nandalal, K. D. W. (2009). Use of the hydrodynamic model to forecast floods of Kalu River in Sri Lanka. Journal of Flood Risk Management, 2,151-158. Nash, J. E., & Sutcliffee, J. (1970). River flow forecasting through conceptual models Part I-A discussion of principles. Journal of Hydrology, 10 (3), 282–290. Nelson, J. M., Shimizu, Y., Takebayashi, H., & McDonald, R. R. (2010). The International river interface cooperative: public domain software for river modelling. 2nd Joint Federal Interagency Conference, Las Vegas, NV. Nelson et al. (2016). The international river interface cooperative: Public domain flow and morphodynamics software for education and applications, Advances in Water Resources, 93, 62-74. O’Brien, J. D. (2006). FLO-2D User’s Manual, Version 2006.01. FLO Engineering: Nutrioso. O'Callaghan, J., & Mark, D. (1984). The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 28 (3), 323-344. Pakoksung, K., & Takagi, M. (2016). Digital elevation models on accuracy validation and bias correction in vertical. Modeling Earth Systems and Environment, 2(1). Páez, A., Farber, S., & Wheeler, D. (2011). A simulation-based study of geographically weighted regression as a method for investigating spatially varying relationships. Environment and Planning, 43(12), 2992-3010. Peña, F., & Nardi, F. (2018). Floodplain Terrain Analysis for Coarse Resolution 2D Flood Modeling. Hydrology, 5(4), 52. https://doi.org/10.3390/hydrology5040052. Papaioannou, G., Loukas, A., Vasiliades, L., & Aronica, G. T. (2016). Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach. Natural Hazards, 83(S1), 117-132. https://doi.org/10.1007/s11069-016-2382-1. Pappenberger, F., Beven, K., Horritt, M., & Blazkova, S. (2005). Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. Journal of Hydrology, 302, 46–69. 125 Pappenberger, F., Matgen, P., Beven, K. J., Henry, J. B., Pfister, L., & Fraipont, P. (2006). Influence of uncertain boundary conditions and model structure on flood inundation predictions. Advances in Water Resources, 29(10), 1430–1449. Pappenberger, F., Beven, K. J., Ratto, M., Matgen, P. (2008). Multi-method global sensitivity analysis of flood inundation models. Advanced Water Resources 31 (1), 1- 14. Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission – a new class of digital elevation models acquired by spaceborne radar, ISPRS Journal of Photogrammetric and Remote Sensing, 57, 241–262. Rai, P. K., Dhanya, C. T., & Chahar, B. R. (2018). Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani river delta. Natural Hazards, 92(3), 1821–1840. https://doi.org/10.1007/s11069-018- 3281-4. Rayburg, S., Thoms, M., & Neave, M. (2009). A comparison of digital elevation models generated from different data sources. Geomorphology, 106, 261–270. Rodgriguez, E., Morris, C., & Belz, J. (2006). A global assessment of SRTM performance. Photogrammetric Engineering and Remote Sensing, 72, 249–260. Rutschmann, P., & Hager, W. (1996). Diffusion of flood waves. Journal of Hydrology, 178, 19–32. Samuels, P. G. (1990). Cross-section location in one-dimensional models.International Conference on River Flood Hydraulics, 339-350. Samarasinghe, S. M. J. S., Nandalal, H. K., Weliwitiya, D. P., Fowze, J. S. M., Hazarika, M. K., & Samarakoon, L. (2010). Application of Remote Sensing and GIS for flood risk analysis: a case study at Kalu River, Sri Lanka, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8. Sanders, B. F. (2007). Evaluation of online DEMs for flood inundation modelling. Advances in Water Resources, 30(8), 1831–1843. Saltelli, A., Chan, K., & Scott, M. (2000). Sensitivity analysis, Wiley, New York. Schumann, G., Matgen, P., Cutler, M. E. J., Black, A., Hoffmann, L., & Pfister, L. (2008). Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. Journal of Photogrammetry and Remote Sensing, 63(3), 283– 296. Shokory, J. A. N., Tsutsumi, J. G., & Sakai, K. (2016). Flood Modeling and Simulation using iRIC : A Case Study of Kabul City. 3rd European Conference on Flood Risk Management. Siddarth, S. (2014). Investigating the role of dem resolution and accuracy on flood inundation mapping. MSc Thesis, Purdue University. Srinivas, K., Werner, M., & Wright, N. (2008). Comparing forecast skill of inundation models of differing complexity: The case of Upton upon Severn. Flood Risk Management: Research and Practice, 85–94. 126 Smith, S., Holland, D., & Longley, P. (2004). The importance of understanding error in Lidar digital elevation models. Proceedings of XXth ISPRS. Smith, S. L H. D. A., & Longley, P. A. (2003). The effect of changing grid size in the creation of laser scanner digital surface models. URL:www.geocomputation.org. Access date:12/2004. Snead, D. B. (2000). Development and application of unsteady flow models using geographic information systems. Master Thesis. University of Texas at Austin, Texas. Straatsma, M., & Huthoff, F. (2011). Uncertainty in 2D hydrodynamic models from errors in roughness parameterization based on aerial images. Physics and Chemistry of the Earth, 36, 324–334. Sun, G., Ranson, K. J., Kharuk, V. I., & Kovacs, K. (2003). Validation of surface height from shuttle radar topography mission using shuttle laser altimetry, Remote Sensing Environment, 88, 401–411. Tate, E. C., Maidment, D. R., Olivera, F., & Anderson, D. J. (2002). Creating a Terrain Model for Floodplain Mapping. Journal of Hydrologic Engineering, 7, 100–108. Tarekegn, T. H., Haile, A. T., Rientjes, T., Reggiani, P., & Alkema, D. (2010). Assessment of ASTER generated DEM for 2D hydrodynamic flood modelling. International Journal of Applied Earth Observation and Geoinformation, 12(6), 457– 465. Tekleab, S., Uhlenbrook, S., Mohamed, Y., Savenije, H. H., Temesgen, M., & Wenninger, J. (2011). Water Balance Modeling of Upper Blue Nile Catchments using a TopDown Approach. Copernicus Publication. Thompson, J. A., Bell, J. C., & Butler, C. A. (2001). Digital elevation model resolution, Effects on terrain attribute calculation and quantitative soil-landscape modelling. Geoderma, 100, 67–89. Thornton, P. E., Running, S. W., & White, M. A. (1997). Generating surface of a daily meteorological variable over large regions of complex terrain. Journal of Hydrology, 190 (3–4), 214–250. Tsubaki, R., & Kawahara, Y., (2013). The uncertainty of local flow parameters during inundation flow over complex topographies with elevation errors. Journal of Hydrology, 486, 71-87. USACE, (2002). US-Army Corps of Engineers, HEC-River Analysis System, Hydraulic Reference Manual, Version 3.1. U.S. Geological Survey [web log post]. Retrieved August 15,2018, from http:// earthexplorer.usgs.gov. Vaze, J., Teng, J., & Spencer, G. (2010). Impact of DEM accuracy and resolution on topographic indices. Environmental Modelling and Software, 25(10), 1086–1098. Varga, M., & Bašić, T. (2015). Accuracy validation and comparison of global digital elevation models over Croatia. International Journal of Remote Sensing, 36(1), 170– 189. 127 Vanderkimpen, P., Melger, E., & Peeters, P. (2009.). Flood modelling for risk evaluation- a MIKE FLOOD vs. SOBEK 1D2D benchmark study. Flood Risk Management: Research and Practice (CRC Press 2008), 77–84. https://doi.org/ 10.1201/ 9780 2038 83 020. ch9. Van Niel, T. G., McVicar, T. R., Li, L., Gallant, J. C., & Yang, Q. (2008). The impact of misregistration on SRTM and DEM image differences. Remote Sensing of Environment, 112 (5), 2430–2442. Walczak, Z., Sojka, M., Wrózy´nski, R., & Laks, I. (2016). Estimation of Polder Retention Capacity Based on ASTER, SRTM and LIDAR DEMs: The Case of Majdany Polder (West Poland). Water, 8, 230. Waseem, M., Mani, N., Andiego, G., & Usman, M. (2017). A review of criteria of fit for hydrological models. International Research Journal of Engineering and Technology, 04 (11), 1765-1772. Wang, W., Yang, X., & Yao, T. (2011). Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast Tibet, Hydrological Process, 26, 213–225. Werner, M. G. F. (2001). Impact of grid size in GIS-based flood extent mapping using a 1-D flow model. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7–8), 517–522. Werner, M. G. F., Hunter, N. M., & Bates, P. D. (2005). Identifiability of distributed floodplain roughness values in flood extent estimation. Journal of Hydrology, 314, 139–157. Wongsa, S. (2014). Simulation of Thailand Flood 2011. International Journal of Engineering and Technology, 6(6), 452–458. https:// doi . org / 10 . 7763 / IJ ET . 2014.V6.740. World Meteorological Organization. (1975) Inter-comparison of conceptual models used in operational hydrological forecasting. (Operational hydrology report no.7/WMO- No 429). Geneva, Switzerland. World Meteorological Organization (WMO)(2003). Our Future Climate Publication, WO-952. World Meteorological Organization (WMO) (2008). Guide to Hydrological Practices. Volume I: Hydrology-from Measurement to Hydrological Information. WMO No. 168. World Meteorological Organization, Geneva. World Meteorological Organization (WMO) and Global Water Partnership (GWP), (2013). Integrated Flood Management Tools Series No.20. Wright, N. G., Villanueva, I., Bates, P. D., Mason, D. C., Wilson, M. D., Pender, G., Neelz, S. (2008). Case Study of the Use of Remotely Sensed Data for Modeling Flood Inundation on the River Severn, U.K. Journal of Hydraulic Engineering. (ASCE) 134 (5). Xiong, L., & Guo, S. (1999). A two-parameter monthly water balance model and its application. Journal of Hydrology, 216(1–2), 111–123. 128 Yalcin, G., & Akyurek, Z. (2004). Analysing flood vulnerable areas with multicriteria evaluation. International Society for Photogrammetry and Remote Sensing, XXth ISPRS Congress, Istanbul, Turkey, 12-23 July. Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests, Journal of Statistical Computation and Simulation, 81, 2141-2155.