REFERENCES [1] T. M. Mitchell et al., Machine learning. McGraw-hill New York, 2007, vol. 1. [2] Z.-H. Zhou, Machine learning. Springer Nature, 2021. [3] I. Lee and Y. J. Shin, “Machine learning for enterprises: Applications, algorithm selection, and challenges,” Business Horizons, vol. 63, no. 2, pp. 157–170, 2020. [4] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K. Hazel- wood, E. Isaac, Y. Jia, B. Jia et al., “Machine learning at facebook: Understand- ing inference at the edge,” in 2019 IEEE international symposium on high per- formance computer architecture (HPCA). IEEE, 2019, pp. 331–344. [5] C. Olston, N. Fiedel, K. Gorovoy, J. Harmsen, L. Lao, F. Li, V. Rajashekhar, S. Ramesh, and J. Soyke, “Tensorflow-serving: Flexible, high-performance ml serving,” arXiv preprint arXiv:1712.06139, 2017. [6] A. Mishra, Machine learning in the AWS cloud: Add intelligence to applications with Amazon Sagemaker and Amazon Rekognition. John Wiley & Sons, 2019. [7] A. Paleyes, R.-G. Urma, and N. D. Lawrence, “Challenges in deploying machine learning: a survey of case studies,” ACM Computing Surveys, vol. 55, no. 6, pp. 1–29, 2022. [8] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey of devops concepts and challenges,” ACM Computing Surveys (CSUR), vol. 52, no. 6, pp. 1–35, 2019. [9] F. Erich, C. Amrit, and M. Daneva, “Report: Devops literature review,” University of Twente, Tech. Rep, 2014. [10] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” Ieee Software, vol. 33, no. 3, pp. 94–100, 2016. [11] S. Alla, S. K. Adari, S. Alla, and S. K. Adari, “What is mlops?” Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure, pp. 79–124, 2021. [12] A. Lima, L. Monteiro, and A. P. Furtado, “Mlops: Practices, maturity models, roles, tools, and challenges-a systematic literature review.” ICEIS (1), pp. 308– 320, 2022. 66 [13] Google. Mlops: Continuous delivery and automation pipelines in ma- chine learning. [Online]. Available: https://cloud.google.com/architecture/ mlops-continuous-delivery-and-automation-pipelines-in-machine-learning [14] MLOps. Machine learning operations. [Online]. Available: https://ml-ops.org/ [15] S. Mäkinen, H. Skogström, E. Laaksonen, and T. Mikkonen, “Who needs mlops: What data scientists seek to accomplish and how can mlops help?” in 2021 IEEE/ACM 1st Workshop on AI Engineering-Software Engineering for AI (WAIN). IEEE, 2021, pp. 109–112. [16] Y. Zhou, Y. Yu, and B. Ding, “Towards mlops: A case study of ml pipeline plat- form,” in 2020 International conference on artificial intelligence and computer engineering (ICAICE). IEEE, 2020, pp. 494–500. [17] M. M. John, H. H. Olsson, and J. Bosch, “Towards mlops: A framework and maturity model,” in 2021 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). IEEE, 2021, pp. 1–8. [18] N. Hewage and D. Meedeniya, “Machine learning operations: A survey on mlops tool support,” arXiv preprint arXiv:2202.10169, 2022. [19] A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi, S. A. Hong, A. Konwin- ski, C. Mewald, S. Murching, T. Nykodym et al., “Developments in mlflow: A system to accelerate the machine learning lifecycle,” in Proceedings of the fourth international workshop on data management for end-to-end machine learning, 2020, pp. 1–4. [20] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwinski, S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe et al., “Accelerating the ma- chine learning lifecycle with mlflow.” IEEE Data Eng. Bull., vol. 41, no. 4, pp. 39–45, 2018. [21] R. Kuprieiev, D. Petrov, S. Pachhai, P. Redzynski, C. da Costa-Luis, P. Rowlands, A. Schepanovski, I. Shcheklein, B. Taskaya, J. Orpinel et al., “Dvc: Data ver- sion control-git for data & models,” Zenodo. Available online at: https://zenodo. org/record/5654595 (accessed October 30, 2021), 2021. [22] F. Calefato, F. Lanubile, and L. Quaranta, “A preliminary investigation of mlops practices in github,” in Proceedings of the 16th ACM/IEEE International Sympo- sium on Empirical Software Engineering and Measurement, 2022, pp. 283–288. [23] S. Haines, “Workflow orchestration with apache airflow,” in Modern Data En- gineering with Apache Spark: A Hands-On Guide for Building Mission-Critical Streaming Applications. Springer, 2022, pp. 255–295. 67 [24] D. A. Tamburri, “Sustainable mlops: Trends and challenges,” in 2020 22nd inter- national symposium on symbolic and numeric algorithms for scientific computing (SYNASC). IEEE, 2020, pp. 17–23. [25] AWS. Why should you use mlops? [Online]. Available: https://docs.aws. amazon.com/sagemaker/latest/dg/sagemaker-projects-why.html [26] S. Selvin, R. Vinayakumar, E. Gopalakrishnan, V. K. Menon, and K. Soman, “Stock price prediction using lstm, rnn and cnn-sliding window model,” in 2017 international conference on advances in computing, communications and infor- matics (icacci). IEEE, 2017, pp. 1643–1647. [27] M. Roondiwala, H. Patel, and S. Varma, “Predicting stock prices using lstm,” International Journal of Science and Research (IJSR), vol. 6, no. 4, pp. 1754– 1756, 2017. [28] P. Ruf, M. Madan, C. Reich, and D. Ould-Abdeslam, “Demystifying mlops and presenting a recipe for the selection of open-source tools,” Applied Sciences, vol. 11, no. 19, p. 8861, 2021. [29] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi, and T. Zimmermann, “Software engineering for machine learning: A case study,” in 2019 IEEE/ACM 41st International Conference on Software En- gineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 2019, pp. 291–300. [30] C. Renggli, L. Rimanic, N. M. Gürel, B. Karlaš, W. Wu, and C. Zhang, “A data quality-driven view of mlops,” arXiv preprint arXiv:2102.07750, 2021. [31] Y. Demchenko, “From devops to dataops: Cloud based software development and deployment.” [32] B. Karlaš, M. Interlandi, C. Renggli, W. Wu, C. Zhang, D. Mukunthu Iyap- pan Babu, J. Edwards, C. Lauren, A. Xu, and M. Weimer, “Building continu- ous integration services for machine learning,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 2407–2415. [33] I. Karamitsos, S. Albarhami, and C. Apostolopoulos, “Applying devops practices of continuous automation for machine learning,” Information, vol. 11, no. 7, p. 363, 2020. [34] D. Wang, Q. V. Liao, Y. Zhang, U. Khurana, H. Samulowitz, S. Park, M. Muller, and L. Amini, “How much automation does a data scientist want?” arXiv preprint arXiv:2101.03970, 2021. 68 [35] A. Posoldova, “Machine learning pipelines: From research to production,” IEEE Potentials, vol. 39, no. 6, pp. 38–42, 2020. [36] T. Granlund, A. Kopponen, V. Stirbu, L. Myllyaho, and T. Mikkonen, “Mlops challenges in multi-organization setup: Experiences from two real-world cases,” in 2021 IEEE/ACM 1st Workshop on AI Engineering-Software Engineering for AI (WAIN). IEEE, 2021, pp. 82–88. [37] D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine learning operations (mlops): Overview, definition, and architecture,” IEEE Access, 2023. [38] G. Symeonidis, E. Nerantzis, A. Kazakis, and G. A. Papakostas, “Mlops- definitions, tools and challenges,” in 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2022, pp. 0453– 0460. [39] I. L. Markov, P. A. Apostolopoulos, M. Garrard, Y. Huang, T. Gupta, A. Li, C. Cardoso, G. Han, R. Maghsoudian, N. Zhou et al., “Scalable end-to-end ml platforms: from automl to self-serve,” arXiv preprint arXiv:2302.14139, 2023. [40] A. Bodor, M. Hnida, and D. Najima, “Mlops: Overview of current state and future directions,” in Innovations in Smart Cities Applications Volume 6: The Proceedings of the 7th International Conference on Smart City Applications. Springer, 2023, pp. 156–165. [41] N. Muralidhar, S. Muthiah, P. Butler, M. Jain, Y. Yu, K. Burne, W. Li, D. Jones, P. Arunachalam, H. S. McCormick et al., “Using antipatterns to avoid mlops mistakes,” arXiv preprint arXiv:2107.00079, 2021. [42] Y. Liu, Z. Ling, B. Huo, B. Wang, T. Chen, and E. Mouine, “Building a plat- form for machine learning operations from open source frameworks,” IFAC- PapersOnLine, vol. 53, no. 5, pp. 704–709, 2020. [43] Dvc. [Online]. Available: https://dvc.org/ [44] Dvc repository. [Online]. Available: https://github.com/iterative/dvc [45] Mlflow. [Online]. Available: https://mlflow.org/ [46] Mlflow repository. [Online]. Available: https://github.com/mlflow/mlflow [47] Neptune. [Online]. Available: https://mlops.neptune.ai/ [48] Neptune repository. [Online]. Available: https://github.com/neptune-ai [49] Pachyderm. [Online]. Available: https://www.pachyderm.com/ 69 [50] Pachyderm repository. [Online]. Available: https://github.com/pachyderm/ pachyderm [51] Optuna. [Online]. Available: https://optuna.org/ [52] Optuna repository. [Online]. Available: https://github.com/optuna/optuna [53] Sigopt. [Online]. Available: https://sigopt.com/ [54] Sigopt repository. [Online]. Available: https://github.com/sigopt/sigopt-server [55] Kubeflow. [Online]. Available: https://www.kubeflow.org/ [56] Kubeflow repository. [Online]. Available: https://github.com/kubeflow/kubeflow [57] Polyaxon. [Online]. Available: https://polyaxon.com/ [58] Polyaxon repository. [Online]. Available: https://github.com/polyaxon/polyaxon [59] Airflow. [Online]. Available: https://airflow.apache.org/ [60] Airflow repository. [Online]. Available: https://github.com/apache/airflow [61] Bentoml. [Online]. Available: https://www.bentoml.com/ [62] Bentoml repository. [Online]. Available: https://github.com/bentoml/BentoML [63] Cortex. [Online]. Available: https://www.cortex.io/ [64] Cortex repository. [Online]. Available: https://github.com/cortexlabs/cortex [65] Seldon. [Online]. Available: https://www.seldon.io/ [66] Seldon repository. [Online]. Available: https://github.com/SeldonIO/seldon-core [67] Fiddler. [Online]. Available: https://www.telerik.com/fiddler [68] Fiddler repository. [Online]. Available: https://github.com/telerik/ fiddler-everywhere-docs [69] Hydrosphere. [Online]. Available: https://hydrosphere.io/ [70] Hydrosphere repository. [Online]. Available: https://github.com/ Hydrospheredata/hydro-serving [71] Evidently. [Online]. Available: https://www.evidentlyai.com/ [72] Evidently repository. [Online]. Available: https://github.com/evidentlyai/ evidently 70 [73] Github action. [Online]. Available: https://github.com/features/actions [74] Amazon sagemaker. [Online]. Available: https://aws.amazon.com/sagemaker/ [75] Mlops on vertex ai. [Online]. Available: https://cloud.google.com/vertex-ai/ docs/start/introduction-mlops [76] Azure machine learning. [Online]. Available: https://azure.microsoft.com/en-us/ products/machine-learning 71