118 REFERENCE [1] D. Dollimore, “The application of thermal analysis in studying the thermal decomposition of solids,” Thermochim. Acta, vol. 203, no. C, pp. 7–23, 1992. [2] B. James and Nelson, “Determination of kinetic parameters of six ablation polymers by thermogravimetric analysis,” Natl. Aeronaut. Sp. Adm., 1967. [3] J. A. Foreman and R. L. Blaine, “ISOTHERMAL CRYSTALLIZATION MADE EASY: A SIMPLE MODEL AND MODEST COOLING RATES.” [4] R. Bucci, V. Carunchio, and A. D. Magri, “Using thermo analytical data. part 1. the power of kinetic palmers dermined from thermogravimetry to describe the experimental behaviour of the sample ugo,” vol. 158, pp. 125–141, 1990. [5] Y. Han, T. Li, K. Saito, and À. Aexp, “Comprehensive Method Based on Model Free Method and IKP Method for Evaluating Kinetic Parameters of Solid State Reactions,” J. Comput. Comput. Chem., no. 3, 2012. [6] D. Dean, “Thermal Gravimetric Analysis.” . [7] M. E. Brown, Introduction to Thermal Analysis, vol. 1. 2001. [8] “Operating Procedures for the TGA Purpose,” department Lab manager or Scientific. Instructional Technician. [Online]. Available: http://depts.washington.edu/mseuser/Equipment/procedures documents/TGA.pdf. [9] Sergey Vyazovkin, Isoconversional Kinetics of Thermally Stimulated Processes. Birmingham, AL 2014: Springer US, 2015. [10] J. Sastak, “STUDY OF THE KINETICS OF THE MECHANISM OF SOLID- STATE REACTIONS AT INCREASING TEMPERATURES,” Thermochim. Acta, vol. 3, no. 2, pp. 1–12, 1971. [11] D. R. F. Ammar Khawam, “Solid-State Kinetic Models : Basics and Mathematical Fundamentals,” J. Phys. Chem. B, vol. 110, no. 35, pp. 17315– 17328, 2006. [12] S. Vyazovkin and D. Dollimore, “Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal 119 reactions in solids,” J. Chem. Inf. Comput. Sci., vol. 36, no. 1, pp. 42–45, 1996. [13] J. Cai, W. Wu, and R. Liu, “Isoconversional Kinetic Analysis of Complex Solid- State Processes : Parallel and Successive Reactions,” Ind. Eng. Res., vol. 16157, no. 4, 2012. [14] P. D. Garn and S. F. Hulber, “Kinetic Investigations by Techniques of Thermal Analysis,” C R C Crit. Rev. Anal. Chem., vol. 3, no. 1, pp. 65–111, 1972. [15] P. D. Garn, “Kinetics of thermal decomposition of the solid state. ii. delimiting the homogeneous-reaction model,” Thermochim. Acta, vol. 160, pp. 135–145, 1990. [16] S. Vyazovkin and C. A. Wight, “Isothermal and non- isothermal kinetics of thermally stimulated reactions of solids,” Int. Rev. Phys. Chem., vol. 17, no. 3, pp. 407–433, 1998. [17] Y. Han, “THEORETICAL STUDY OF THERMAL ANALYSIS KINETICS,” University of Kentucky, 2014. [18] J. Sestak, “Thermophysical Properties of Solids,” Compr. Anal. Chem., 1984. [19] G. A. Brown ME, Dollimore D, “Theory of solid state reaction kinetics,” Compr. Chem. Kinet., vol. 22, pp. 41–113, 1980. [20] P. E. Sánchez-jiménez, L. A. Pérez-maqueda, A. Perejón, and J. M. Criado, “Generalized master plots as a straightforward approach for determining the kinetic model : The case of cellulose pyrolysis,” Thermochim. Acta, vol. 552, pp. 54–59, 2013. [21] W. Ng, “Thermal Decomposition in the Solid State,” Aust. J. Chem., vol. 7, no. 28, pp. 1169–1178, 1975. [22] P. Šimon, “Fourty years of the Šesták-Berggren equation,” Thermochim. Acta, vol. 520, no. 1–2, pp. 156–157, 2011. [23] S. Vyazovkin, “The truncated Sestak–Berggren equation is still the Sestak– Berggren equation, just truncated,” no. 1, pp. 7–8, 2015. [24] J. T. A. Calorim, “´ k – Berggren equation : now questioned but formerly celebrated — what is right,” 2015. 120 [25] S. Kim, E. Jang, D. Shin, and K. Lee, “Using peak properties of a DTG curve to estimate the kinetic parameters of the pyrolysis reaction : application to high density polyethylene,” Polym. Degrad. Stab., vol. 85, pp. 799–805, 2004. [26] C. Haixiang and L. Naian, “New Procedure for Derivation of Approximations for Temperature Integral,” AIChE J., vol. 52, no. 12, pp. 4181–4185, 2006. [27] Y. Han, H. Chen, and N. Liu, “New incremental isoconversional method for kinetic analysis of solid thermal decomposition,” J. Therm. Anal. Calorim., vol. 104, no. 2, pp. 679–683, 2011. [28] T. Wanjun and Æ. C. Donghua, “New approximate formula for the generalized temperature integral,” pp. 437–440, 2009. [29] B. F. Bojan Janković*,a, Srećko Stopićb, Jelena Bogovićb, “Kinetic and thermodynamic investigations of non-isothermal decomposition process of a commercial silver nitrate in an argon atmosphere used as the precursors for ultrasonic spray pyrolysis (USP). The mechanistic approach Bojan,” Chem. Eng. Process., 2014. [30] A. W. and J. P. R. T. Coats, “Kinetic Parameters from Thermogravimetric Data,” Nat. Publ. Gr., vol. 201, pp. 68–69, 1964. [31] S. J. Achar BN, Brindley GW, “Kinetics and mechanism of dehydroxylation processes. III. Applications and limitations of dynamic methods.,” Proc. Int. clay Conf., vol. 1, pp. 67–73, 1966. [32] W. S. Sharp JH, “Kinetic analysis of thermogravimetric data.,” Anal. Chem., vol. 41, pp. 2060–2, 1969. [33] S. Vyazovkin and C. A. Wight, “Kinetics in solids,” pp. 125–149, 1997. [34] H. Chen, N. Liu, and W. Fan, “A new method to explain the model dependence of apparent activation energy derived from a single nonisothermal dynamic curve,” Polym. Degrad. Stab., vol. 91, no. 8, pp. 1726–1730, Aug. 2006. [35] P. Budrugeac, “THE KISSINGER LAW AND THE IKP METHOD FOR EVALUATING THE NON-ISOTHERMAL KINETIC PARAMETERS,” J. ofThermal Anal. Calorim., vol. 89, no. 1, pp. 143–151, 2007. 121 [36] A. I. L. and S. V. Levchik, “A METHOD OF FINDING INVARIANT VALUES OF KINETIC PARAMETERS,” J. Therm. Anal., vol. 27, pp. 89–93, 1983. [37] P. Budrugeac, “DIFFERENTIAL NON-LINEAR ISOCONVERSIONAL PROCEDURE FOR EVALUATING THE ACTIVATION ENERGY OF NON-ISOTHERMAL REACTIONS,” vol. 68, pp. 131–139, 2002. [38] V. Mamleev, “Three model-free methods for calculation of activation energy in TG.,” J. Therm. Anal. Calorimetry, vol. 78, no. 3, pp. 1009–1027, 2004. [39] H. L. Friedman, “Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry . Application to a Phenolic Plastic,” J. Polym. Sci. Part C Polym. Symp., vol. 6, no. 1, pp. 183–195, 1964. [40] T. OZAWA, “A New Method of Analyzing Thermogravimetric Data of the curve,” vol. 707, no. 1952, 1965. [41] T. TB, “A new method for analysing non-isothermal thermoanalytical data from solid-state reactions.,” Thermochim. Acta, vol. 325, no. 1, pp. 43–46. [42] C. Li and T. B. Tang, “DYNAMIC THERMAL ANALYSIS OF SOLED- STATE REACTIONS The ultimate method for data analysis?,” J. Therm. Anal., vol. 49, pp. 1243–1248, 1997. [43] S. Vyazovkin, “Modification of the integral isoconversional method to account for variation in the activation energy,” J. Comput. Chem., vol. 22, no. 2, pp. 178–183, 2001. [44] J. M. E. S.-J. and L. A. P.-M. Criado, “CRITICAL STUDY OF THE ISOCONVERSIONAL METHODS OF KINETIC ANALYSIS,” J. ofThermal Anal. Calorim., vol. 92, pp. 199–203, 2008. [45] R. Blaine, “A faster approach to obtaining kinetic parameters,” no. January, pp. 21–23, 1998. [46] J. H. Flynn, “No Title,” Therm. Anal. Acad. Press, vol. 2, p. 1111, 1969. [47] S. R. S. and M. R. P. S. Gill, “MODULATED DIFFERENTIAL SCANNING CALORIMETRY,” J. Therm. Anal., vol. 40, pp. 931–939, 1993. 122 [48] D. Dollimore, T. A. Evans, Y. F. Lee, and F. W. Wilburn, “Correlation between the shape of a TG/DTG curve and the form of the kinetic mechanism which is applying,” Thermochim. Acta, vol. 198, no. 2, pp. 249–257, 1992. [49] J. M. Criado, M. PILAR, G. MUNUERA, and V. RIVES-ARNAU, “Study of the ‘shape index’ in the analysis of temperature-programmed desorption curves,” Actahermochimica Acta, vol. 38, pp. 37–45, 1980. [50] U. B. Ceipidor, E. Brizzi, R. Bucci, and A. D. Magrí, “Using thermoanalytical data. Part 7. DSC/DTA/DTG peak shapes depending on operational settings, equipment features, sample kinetic and thermodynamic parameters,” Thermochim. Acta, vol. 247, no. 2, pp. 347–356, 1994. [51] D. Dollimore, T. A. Evans, Y. F. Lee, G. P. Pee, and F. W. Wilburn, “The significance of the onset and final temperatures in the kinetic analysis of TG curves,” vol. 196, pp. 255–265, 1992. [52] D. Dollimore, P. Tong, and S. Alexander, “thermochimica acta The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation ’,” vol. 283, pp. 13–27, 1996. [53] C. Haixiang, L. Naian, and Z. Weitao, “Critical study on the identification of reaction mechanism by the shape of TG/DTG curves,” Solid State Sci., vol. 12, no. 4, pp. 455–460, 2010. [54] O. S. Al-ayed and K. Mutah, “Study of the Kinetics and Mechanisms of Thermal Decomposition of Ellajjun Oil Shale.” [55] A. N. Kozlov, D. A. Svishchev, G. I. Khudiakova, and A. F. Ryzhkov, “A Kinetic Analysis of the Thermochemical Conversion of Solid Fuels ( A Review ),” vol. 51, no. 4, pp. 205–213, 2017. [56] T. Martí-rosselló, J. Li, and L. Lue, “Quantitatively modelling kinetics through a visual analysis of the derivative thermogravimetric curves : Application to biomass pyrolysis,” Energy Convers. Manag., vol. 172, no. June, pp. 296–305, 2018. [57] R. Dodampola, S. Amarasingha, D. Attygalle, and S. Weragoda, “Materials Today : Proceedings Improved method to extract kinetic parameters from 123 thermograms,” Mater. Today Proc., no. xxxx, 2019. [58] X. Yang and Z. Jiang, “Bioresource Technology Kinetic studies of overlapping pyrolysis reactions in industrial waste activated sludge,” Bioresour. Technol., vol. 100, no. 14, pp. 3663–3668, 2009. [59] A. K. Galwey, “Magnitudes of Arrhenius parameters for decomposition reactions of solids,” Thermochim. Acta, vol. 242, no. C, pp. 259–264, 1994. [60] S. Kim and P. Jae K, “Characterization of thermal reaction by peak temperature and height of DTG curves,” Thermochim. Acta, vol. 264, pp. 137–156, 1995. [61] D. Egodage, R. Dodampola, S. Weragoda, D. A. S. Amarasinghe, and D. Attygalle, “Investigation of Plasticizer Evaporation of Local Electrical Cable Insulation,” pp. 0–4. [62] F. W. Wilburn, “The determination of kinetic parameters from DTG curves - fact or fction ?,” Thermochim. Acta, vol. 341, pp. 77–87, 1999. [63] J. R. Stuff, J. Whitecavage, M. Mcadams, Y. Nie, and E. Kleine-benne, “Thermal Gravimetric Analysis/Mass Spectrometry Simulation using the GERSTEL Automated Pyrolyzer,” 2012. [64] J. W. Dolan and W. Creek, “Peak Tailing and Resolution,” Walnut Creek, California, USA. [65] “High Performance Liquid Chromatography,” Chemistry LibreTexts, 2019. [Online]. Available: https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_ Modules_(Analytical_Chemistry)/Instrumental_Analysis/Chromatography/Hi gh_Performance_Liquid_Chromatography. [66] Attila Felinger, “Data Analysis and Signal Processing in Chromatography,” in Data Handling in Science and Technology, Attila Felinger, Ed. Elsevier B.V., 1998, pp. 1–414. [67] “About Resolution, Part 1,” Shimadzu Corporation, 2018. [Online]. Available: https://www.shimadzu.com/an/hplc/support/lib/lctalk/resol-1.html.