2D - 3D Hybrid perovskites for perovskite solar cells

Loading...
Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Hybrid Organic-Inorganic Perovskites (HOIP) have been studied extensively and grown popular. Especially in Three-dimensional (3D) Perovskites, achieving power conversion efficiency (PCE) exceeds 23%. Nevertheless, some of the morphological imperfections will limit their structural capabilities. Pinholes in discontinuous perovskite films induces the huge leakage current which can cut down the device efficiency and creates a short circuit. Therefore, it is essential to deposit a compact film with passivated defects. Two-dimensional (2D) halide perovskites, conversely attracted significant attention and become a positive alternative with their uncomplicated synthesis, stability, and excellent photoelectric properties. This study, investigates the formation and properties of 2D Tetrabutylammonium lead halide (TBAPbBrxI3-x) HOIP. Tetrabutylammonium ion is a large cation, and more likely forms a 2D perovskite structure which was confirmed by the XRD spectrum. Substantiate by SEM images, TBAPbBrxI3-x establishing and favors crystals with enhance orientation and few grain boundaries and. However, the absorption spectra of the film shows an excitonic peak at 411 nm and a clear band edge at 450 nm. Resulting in poor absorbance in the visible range, with optical band gap of 2.76 eV, narrowing the ability to use TBAPbBrxI3-x alone in solar cells. Conversely, TBAPbBrxI3-x can use as separate capping layer on the top of 3D perovskite layer, enhancing the properties of the 3D perovskite layer. Incorporating TBAPbBrxI3-x into CH3NH3PbI3 shows a better film formation with few holes. The application of mixed perovskite layers incorporated solar cells will result in better structural and optoelectronic properties.

Description

Citation

DOI

Endorsement

Review

Supplemented By

Referenced By