Abstract:
The demand for antibacterial fabric surfaces is increasing day by day. With the covid-19 pandemic situation, there is attention to antibacterial and antiviral nonwoven fabrics which can be used towards the development of personal protective wear. To reduce the environmental pollution caused by disposable and non-biodegradable polymer-made personal protective wear can be replaced by biodegradable polymers like poly(lactic) acid (PLA), which is quite similar to polypropylene, but biodegradable. In this study, the non-thermal plasma treatment method is used to increase the surface reactivity of the PLA nonwoven polymer surface. On the activated nonwoven surface copper nanoparticles are in-situ synthesized by chemical treatments. After 30 minutes of plasma treatment, better copper nanoparticle distribution and higher yield were achieved. Fourier transformed infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were used to characterize the treated PLA nonwoven fabric surfaces.
Citation:
N. C. Rathnayaka, G. K. Nandasiri and N. D. Wanasekara, "Copper Nanoparticle Synthesis on Plasma Treated Poly(lactic) Acid Nonwoven Fabrics," 2022 Moratuwa Engineering Research Conference (MERCon), 2022, pp. 1-5, doi: 10.1109/MERCon55799.2022.9906202.